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“The wines were too various. It was neither the quality nor the quantity that
was at fault. It was the mixture. Grasp that and you have the root of the matter.

To understand all is to forgive all.” Evelyn Waugh - Brideshead Revisited
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Chapter 1

Introduction

1.1 Background

The notion of Darcy’s Law describing flow of water in a porous medium, the water
being driven through the soil from high to low hydraulic head, is of paramount
importance in hydrology. Unknown to many however, in clayey soils, Darcy’s Law
does often not suffice. When instead, or aside from a head difference, variations in
the salt concentration in the pore water exist, an additional flow of water may be
present, which is caused by a process called osmosis. This phenomenon is known
from chemistry and biology and it is sometimes associated with human cells, boats
or animated movies. Osmosis in clay originates from the fact that clay can be seen
as a semi-permeable membrane. Such a membrane (partly) restricts movement
of solutes without hindering movement of solvent. Often, such restrictions are
caused by the geometrical properties of a membrane, i.e. solute molecules may be
larger than the pores of the membrane. Clay, on the other hand, is an example
of a charged membrane: because clay consists of negatively charged platelets, ions
passing through the clay are restricted by electrical repulsion. Hence, clay can
act as a semi-permeable membrane and, provided the clay is subject to a salt
concentration gradient, all conditions are met for osmosis.

This can be mathematically accounted for by extending Darcy’s Law with a
term depending on the salt concentration gradient and a reflection coefficient, a pa-
rameter that expresses the degree of semi-permeability of a membrane. However,
it is well known that other physical driving forces may induce water movement as
well. Examples are flow due to a temperature gradient and flow due to an elec-
trical potential gradient. Exploiting the analogy with osmosis, these processes are
called thermo-osmosis and electro-osmosis respectively. Because these somewhat
misleading designations have permeated throughout the literature on coupled ef-
fects, ‘regular’ osmosis, in this study, is called chemical osmosis, whereas the term
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2 INTRODUCTION 1.1

osmosis is defined as non-hydraulic water flow in general.

In geohydrology, next to Darcy’s Law to characterize groundwater movement,
Fick’s law is used to model transport of dissolved solutes. Analogous to the ex-
tensions of Darcy’s Law, terms related to temperature, electrical potential and
hydraulic gradients can be added to Fick’s law. To complete this description: the
same holds for Fourier’s law (flow of heat) and Ohm’s law (electrical current).
Many of these in total 16 effects have been named after the 19-th century scien-
tists who experimentally have shown the existence of these effects: e.g. Seebeck,
Soret, Peltier and Dufour. Other phenomena are prosaically called membrane po-
tential or electrophoresis. They were not necessarily discovered in soils as such:
few studies on coupled phenomena in soils are known that were performed before
1950. The work of Casagrande [14],[15], dating from 1948 and 1949 respectively,
was probably an important catalyst for the application of electrical effects in soils.
The same can be said about the work of Hanshaw [43], some 14 years after this, for
the advancement of the study on chemical osmosis in the subsurface. Especially
in the sixties and the early seventies a multitude of studies on coupled effects was
published in the literature [35],[24],[38],[65],[68],[69],[11]. The equations describing
coupled effects were, starting in the fifties, usually based on non-equilibrium ther-
modynamics, on the subject of which a number of relevant books appeared during
that time [62],[40],[25]. Finally, microscopic theories to explain electro-osmosis
were known from the 19th century [53],[107],[102], but in the 1960s and 1970s,
a number of theories were proposed that included chemical effects or provided a
general description of coupled effects [29],[38],[11],[43].

What has been lacking in nearly all aforementioned studies is the incorpora-
tion of coupled effects in transient models that are able to predict and interpret
simultaneous development of pressure, concentration, electrical potential and tem-
perature. Some attempts were made in Mitchell et al. [82] where a one-dimensional
model was used to investigate the pore pressure reduction in a clay layer subject to
saline boundary conditions at top and bottom of this layer. The authors focused on
chemico-osmotic consolidation of the layer and only presented non-dimensionalized
and spatially averaged pore pressure and concentration changes in the clay layer.
More recently, Soler [108] presented a one-dimensional model to study the role of
coupled transport phenomena, including thermal osmosis, in radionuclide trans-
port from a repository of high level nuclear waste in the Opalinus Clay, Switzerland.
The model was reduced, however, to a conventional advection-diffusion problem
with constant advection velocity, thereby negating the feedback of temporal and
spatial changes in the concentration gradients contributing to osmotic transport.
Sherwood [106] performed transient flow calculations expressed in terms of pressure
and salinity values on either side of a membrane and therefore greatly simplified the
full transient flow and transport behaviour within the membrane. In [32], Ghas-
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1.2 BACKGROUND 3

semi and Diek described shale deformation due to chemo-mechanical processes, but
their model disregards a process called ultrafiltration and does not properly de-
scribe important aspects of the reflection coefficient. Malusis and Shackelford [76]
presented a more extensive model that includes multiple ionic species and cation
exchange. Unfortunately, Malusis and Shackelford [76] only presented model sim-
ulations in which membrane effects were set to zero.

So, few model studies exist on coupled effects in groundwater. This study is
most likely the first in which, from an geohydrological point of view, chemical
and electrical effects are included in the equations of groundwater flow and solute
transport. Hence, we emphasize in the title of this thesis, i.e. ‘Chemical and
electrical extensions to Darcy’s Law’, the fact that we employ the extended Darcy’s
Law to incorporate the aforementioned osmotic effects. However, extensions of
Fick’s and Ohm’s Law are employed as well.

We investigate the mathematical equations that follow from the combination of
extended flux equations and the usual conservation equations, in order to simulate
transient behaviour of physical variables in real experiments. The buildup of os-
motic pressure, possibly corrected for electro-osmosis, follows from these equations,
and its timescale is strongly correlated to the timescale of simultaneous diffusion
of the solute. The goal is clear: using such a model, one should be able to address
questions regarding, for instance, anomalous pressure buildups or salinity profiles
in compacted clayey environments (see Section 2.2), especially in coastal areas, or
in any area where salt gradients may be expected to be present.

Summarizing, in this study, we address the following research questions:

• How can chemical and electrical effects be introduced in the governing equa-
tions for flow of groundwater and transport of solutes, to quantify the influ-
ence and magnitude of these processes?

• Is it possible to obtain analytical solutions for equations describing osmotically-
induced groundwater flow, and what are the properties of these solutions?
Furthermore, what do numerical solutions of similar problems tell us about
chemical and electro-osmosis in groundwater?

• The quintessential coefficients in this study are the reflection coefficient and
the electro-osmotic permeability. How do different expressions for these co-
efficients from literature compare and how do the dependencies of these co-
efficients on e.g. salt concentration influence, for instance, the buildup of
osmotic pressure?

3



4 INTRODUCTION 1.2

1.2 Thesis outline
This work is organized as follows: the current Chapter 1 is of an introductional
nature. In Chapter 2 we go from general remarks on osmosis, an introduction to
clay and so-called diffuse double layer theory, to a review of semi-permeability of
clays, the relevant coupled processes and the corresponding coefficients. In Chap-
ter 3 we show how non-equilibrium thermodynamics provides us with equations
that are subsequently specified for the different processes, and which balance equa-
tions are relevant for our purposes. In Chapter 4, some analytical solutions of
this set of equations are presented for artificial but relevant example problems.
Some properties of these solutions are investigated along with, for example, the
influence on osmotic pressure buildup of the choice of dependence of the reflection
coefficient on concentration. The model equations are put to the test in Chapter
5: here, two experiments from literature are modelled. It is shown how analyti-
cal and numerical methods can be applied to simulate these experimental results.
Moreover, limitations of the analytical model are discussed and it is shown under
which circumstances we have to rely on numerical modelling to obtain solutions.
In Chapter 6, we use a similar model, extended with electro-osmosis, to predict
the evolution of pressure and concentration distributions with and without electri-
cal effects. Moreover, we use an advanced model to explain experimental results
on membrane potentials. In Chapter 7, it is shown how a numerical groundwater
code called METROPOL is extended with osmosis and some results of numerical
modelling with this code are presented. The thesis is completed with a general
summary of the study, a glossary of terms related to osmosis and a nomenclature.

4



Chapter 2

Theory

In hydrology literature, osmosis is usually disregarded because it is supposed to be
a second order effect, which is for many circumstances not entirely unjustified. It
has, however, been known for decades that specific circumstances may create a soil
environment in which osmotic processes may thrive. In this chapter, the role of
coupled processes in flow of groundwater and transport of solutes is explained. It
contains an extensive literature review and some new results on, for instance, the
microscopic derivation of the so-called reflection coefficient and the relationship
between the diffusion coefficient and the semi-permeability of clay layers. Most
of the processes and coefficients involved in the study of coupled processes in
soils are presented, defined and commented on, in greater or lesser extent. The
chemical background of the semi-permeable behaviour of clay is explained, some
current theories of clay-water interaction are presented and the assumptions used
in this study are justified. Finally, a glossary and a nomenclature are given in the
appendix of this work.

2.1 Osmosis

If two solutions of different concentration are separated by a membrane that is
permeable to the solvent molecules but not to the solute molecules, the solvent
will flow from the low to the high concentration side. This is called osmosis: the
word originates from the greek word ωσµωσ, meaning to push.

Generally speaking, we can say that osmosis refers to non-hydraulically driven
water flow [94]. As we usually attribute water flow to pressure differences, when
other physical processes are responsible for fluid movement, this is called chemical
osmosis (for salt concentration gradients), electro-osmosis (for electrical potential
gradients) and thermo-osmosis (for temperature gradients).

Another way to interpret osmosis is as diffusion of solvent molecules. In this

5



6 THEORY 2.1

case, the energy of the solvent molecules per unit volume may be considered to be
the osmotic pressure. This would imply that water flows due to osmosis from high
to low osmotic pressure. There is some discussion about what is considered to be
high and low osmotic pressure, as the driving force is not hydraulic. In chemistry
literature, for instance, it is customary to say that the pressure needed to stop the
osmotic flow is the osmotic pressure.

The osmotic pressure π can be calculated as follows: assume the schematic
setup of Figure 2.1. The chemical potential µ for an ideal solution is defined as

µ = f(T ) + pV̄ + νRT ln(1− xm), (2.1)

where f(T ) is the part of the chemical potential that is only dependent on temper-
ature, p is pressure, V̄ molal volume, ν is the dissociation constant, R is the gas
constant, T is temperature and xm is molar fraction of salt. The salt concentration
in the fresh water region is assumed to be zero. Subscripts f and s denote fresh
and salt water regions respectively. At equilibrium, the thermodynamic potential
of the solvent in the two regions must be equal, therefore:

µf = µs (2.2)

f(T ) + pf V̄f = f(T ) + psV̄s + νRT ln(1− xm) (2.3)

qosmosis

fresh salt

semi-permeable membranesemi-permeable membranesemi-permeable membranesemi-permeable membranesemi-permeable membranesemi-permeable membrane

Figure 2.1: Schematic picture of an osmotic process

If we assume the fresh water and salt water molal volumes to be roughly equal-
i.e. the molal salt volume to be very small, and introduce the solute concentration
c, we find

6



2.1 OSMOSIS 7

ps − pf =
−νRT
V̄f

ln(1− xm) (2.4)

π = ps − pf ≈
νRT

V̄f
xm = νRTc (2.5)

This last equation is commonly referred to as van’t Hoff’s law, after van’t Hoff
[56], who received the first Nobel prize for chemistry for formulating this law.

2.1.1 General assumptions

Partly following Yeung [124], the default non-equilibrium thermodynamic system
we consider, consists of a charged semi-permeable clay membrane, bounded by
two well-mixed reservoirs of water with a certain hydraulic pressure, that contain
solutes of a certain concentration, and electrodes in the reservoirs that have a
certain electrical potential difference. However, as we consider natural soils, the
domain may consist entirely of soil, and concentration and electrical potential
gradients may extend continuously across the soil.

A membrane is defined as a thin layer, separating two different regions, some-
times permeable to some, but not all, constituents of the regions. Different ap-
proaches have been considered for membrane systems [53]. For instance the mem-
brane is regarded as a discontinuity, separating two fluid phases, where driving
forces are the differences between chemical potentials of the two phases. Because
our research involves the study of osmotic effects in clay liners with a certain ex-
tent, we do not a priori consider the membranes to be thin. So we speak of soils
behaving as if they were ((semi-)permeable) membranes. The approach we will
follow considers the membrane as a separate, quasi-homogeneous phase of finite
thickness.

2.1.2 Clay characteristics

According to Mitchell [80], the term clay refers to either a particle size term,
denoting particles smaller than approximately 2µm, or a mineral term denoting
a so-called clay mineral. The latter refers to a crystalline particle, a primarily
hydrous aluminum silicate consisting of sheets built of silica tetrahedron units.
These consist of a silicon ion tetrahedrally coordinated with four oxygen ions
(shown in Figure 2.2) and aluminum or magnesium octahedron units, i.e. an
aluminum or magnesium ion octahedrally coordinated with six oxygen or hydroxyl
ions. Clay classification is based on the arrangement of these sheets: one octahedral
and one tetrahedral sheet build a so-called 1:1 platelet; kaolinite is an example of a

7



8 THEORY 2.1

1:1 platelet

2:1 platelet

=  oxygen =  silicon =  e.g. aluminum

Figure 2.2: Clay structure [127]

clay configured this way. When an octahedral sheet exists between two tetrahedral
sheets, this is called a 2:1 platelet, an example of which is montmorillonite. Within
clay groups, the distinction can be made between minerals of different isomorphous
substitution, i.e. the occupation of an octahedral or tetrahedral position by a
cation other than the default cation. When this substitution is of a cation of lesser
valence, the platelet will become negatively charged, which is ultimately the cause
for osmosis.

In Figure 2.2, in the octahedral part, the aluminum ion (valence 3+) could
be substituted by, for instance, a magnesium ion (valence 2+). The clays in
experiments that are modelled here, are of the bentonite type. According to [37],
bentonite is any natural material composed predominantly of the clay minerals of
the smectite group whose properties are controlled by these minerals. Bentonite
comes in two flavours, of which the sodium, or Wyoming bentonite is considered
in this study. In Table 2.1, the types and names of clays encountered in this work,
are tabulated (from [80]). In this table, C denotes cation exchange capacity.

2.1.3 Clay scales

It is common to distinguish between different scale descriptions for clays. Usually,
a microscopic scale is defined where clay is assumed to consist of platelets that

8



2.1 OSMOSIS 9

type of clay structure C (meq/l) description
illite 2 : 1 10− 40 2 : 1-stacks connected by potassium
montmorillonite 2 : 1 80− 150
smectite 2 : 1 80− 150 general name for montm.-like clays
kaolinite 1 : 1 3− 15
bentonite 2 : 1 80− 150 mixture of montm. and beidellite
beidellite 2 : 1 80− 150 type of smectite

Table 2.1: Some types of clay

are surrounded by water and ions. Several properties of the clay can be derived
by considering the interaction between the clay matrix and the solution. Often,
these properties are upscaled to allow for a macroscopic description of the clay
by, for instance, homogenization or volume averaging. Some details are presented
further on. Usually, in a macroscopic setup, ionic constituents are not considered
separately anymore, and parameters such as the reflection coefficient and the per-
meability are assumed to be properties of the entire clay-solute-water system. An
alternative approach is described in [75]: the authors work with mixture theory,
considering n overlapping phases (every phase occupying the entire domain). In
essence, a clay is assumed to consist of clusters of around 1000 platelets. The clay
clusters are termed clay particles.

An interesting approach is the one described in [86]. Three different scales are
defined: a micro-scale, where clay platelets and vicinal water exist, a meso-scale,
where the model consists of bulk pore water and clay particles, and the macro-
scale, consisting of the meso-scale particles and bulk water. Hybrid mixture theory
[85] is used to upscale from the micro-to the meso-scale and homogenization to
upscale from the meso- scale to the macro-scale.

2.1.4 Swelling of clays

Clay soils are known to undergo rather large volume changes when the internal
pressure changes. This may cause significant problems: bore walls of oil drillings
may become unstable [75] or buildings may subside due to a non-uniform soil
heave. Swelling of clay can be exploited as well, to improve barriers that prevent
contaminant transport. Swelling of soils may occur by imposing salt or electrical
potential gradients, causing water flow by chemical and electro-osmosis respec-
tively. The extra water pushes the clay platelets apart, causing the clay to swell.
This is called chemical [75] or electrical swelling. Another type of swelling occurs
when the soil is unsaturated, and swelling is driven by capillary forces. This is
called matric swelling.

In this study, we do not consider macroscopic volume changes. This is mainly
because our main interest lies in the transport processes in clay soils under a large

9
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Figure 2.3: A negatively charged clay platelet attracting a cloud of cations

overburden pressure, where swelling is assumed to be marginal. However, we do
consider the porous medium to be deformable; i.e., we allow for porosity changes.

2.1.5 Diffuse double layer theory

Consider a negatively charged clay platelet and a saturated salt solution. Near
the surface of the platelet the concentration of cations is higher, whereas the con-
centration of anions is lower, as illustrated in Figure 2.3. Cations tend to diffuse
to areas of lower concentration in the free solution, but are attracted by the neg-
ative electric charge of the clay surface. The anion concentration, however, is low
near the surface and increases towards the free solution; this is called negative
adsorption. The union of clay surface and distribution of ions near the clay sur-
face is called the diffuse double layer, often abbreviated to DDL. In Figure 2.3 the
following symbols are introduced: the thickness of the liquid film on the charged
surface b, which is defined to be positioned either at the midplane between two
clay platelets (see Figure 2.4) or at the location where the anion and cation con-
centration become equal (see Figure 2.3). In a number of theories, the distance
δ is defined to be the location of an imaginary plane where the concentration of
ions reaches infinity. Furthermore, the clay platelet is assumed to attract a small
immobile layer of water. The electric potential at the point between the immobile
and mobile layer is called the zeta potential ζ, and finally, the parameter κ0, which
is specified later on, is the so-called Debye reciprocal length: the thickness of the

10



2.1 OSMOSIS 11

diffuse double layer, although theoretically infinite [91], is usually represented by
the parameter 1/κ0. Sometimes, the term normalized or effective double layer
thickness is used for the product bκ0.

The structure of the double layer is often described using the Gouy-Chapman
theory, although many adjustments have been made. What follows is a brief syn-
opsis, where we follow [115].

The concentration of ions in the double layer is governed by the Boltzmann dis-
tribution, assuming a 1:1 electrolyte:

c− = c0−e
FΦ/RT , (2.6)

c+ = c0+e
−FΦ/RT , (2.7)

ρ = F (c+ − c−) = −2Fc0 sinh(FΦ/RT ), (2.8)

where ρ is charge density. The concentrations of anions and cations are c− and c+
respectively, superscript 0 denotes ionic concentration in the equilibrium solution.
In the equilibrium solution, we assume electro-neutrality: c0− = c0+ = c0; F is
Faraday’s constant, R is the gas constant, T is temperature and Φ is electric
potential of the ionic charge distribution.

From one of the Maxwell’s equations

∇ · E =
4π

εr
ρ, (2.9)

where εr is the relative permittivity, and the expression for the electric field E =
−∇Φ, follows Poisson’s equation

∇2Φ = −4π

ε
ρ. (2.10)

This leads to a differential equation for Φ:

∇2Φ =
8πFc0
εr

sinh(FΦ/RT ), (2.11)

for a flat double layer. If x denotes the distance to the clay surface, this equation,
in one dimension reads:

d2Φ

dx2
=

8πFc0
εr

sinh(FΦ/RT ). (2.12)

11
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This equation is usually written in terms of the dimensionless quantities y, s, ξ:

y = FΦ/RT, (2.13)

s = FΦ0/RT, (2.14)

ξ = κ0x, (2.15)

where Φ0 is the potential at the clay surface and

κ0 =

√

8πF 2c0
εrRT

. (2.16)

Because c0 is the equilibrium solution solute concentration, we deduce that the
reciprocal thickness of the double layer is dependent on the square root of concen-
tration. Now the equation for the double layer electric potential reduces to

d2y

dξ2
= sinh y. (2.17)

With the boundary condition ξ = 0, y = s, the solution of (2.17) reads:

ey/2 =
es/2 + 1 + (es/2 − 1)e−ξ

es/2 + 1− (es/2 − 1)e−ξ
. (2.18)

This formula expresses the relation between the electrical potential in a diffuse
double layer and the distance to the clay platelets. It will be used later on, in
a slightly different version, to calculate macroscopic coefficients from microscopic
properties of the clay-water system.

Often, the so-called Debye-Hückel approximation is used for equation (2.17).
It involves linearizing equation (2.17) to get:

d2y

dξ2
= y. (2.19)

This approximation is also used to express activity coefficients in terms of concen-
trations.

In [9], an extension to these formulas is presented for the case where divalent ions
are present as well.

A number of corrections on this theory has been proposed:

12



2.1 OSMOSIS 13

• In the Stern model, the Stern layer is introduced to correct the high values
of the concentration near the surface. This layer is of finite thickness and ex-
tends from the surface; the counter-ions are statistically distributed over this
layer in analogy to a Langmuir type derivation of the adsorption isotherm.

• In a different interpretation, the boundary of the Stern layer is usually
called the Outer Helmholtz Plane (OHP); between the OHP and the sur-
face, the ions are only partially solvated, outside fully. There is also an Inner
Helmholtz Plane (IHP), that indicates the distance from the surface within
which the ions are ’unsolvated’

• In the Bolt model [10], the potential energy term in the Boltzmann equation
is extended with a polarization energy term, a Coulomb interaction term and
a repulsion term

Important for our purposes is what happens when double layers overlap: if one
platelet is located at x = 0 and the other at 2d, the center is at d, the electrical
potential at this location is Φd and u is defined as u = FΦd/RT . The following
relation then applies:

∫ u

s

(2 cosh y − 2 cosh u)−1/2 dy = −κ0d (2.20)

This integral can be easily evaluated in terms of elliptic integrals of the first kind to
yield an explicit relation between the midplane potential and the distance between
platelets.

2.1.6 Semi-permeability

When the double layers in the clay overlap (as shown in Figure 2.4), which is most
likely to happen in compacted samples, the distribution of ions now imposes elec-
trical restrictions on ions meaning to migrate through the clay, provided the double
layers do not degenerate because of high bulk concentration. Anions approaching
the aqueous film between the platelets are repelled by the electrical charge on the
platelets. This is called anion exclusion, Donnan exclusion or negative adsorption
[63],[80]. The movement of the cations is restricted as well, as the cations remain
near the anions to maintain electro-neutrality. A membrane that exhibits this
property, is called semi-permeable or leaky, as it allows water molecules to pass
and (partially) restricts ionic movement. A semi-permeable membrane is called
ideal when no solute may pass at all, and non-ideal otherwise.

13
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Figure 2.4: Overlapping double layers impose restrictions when the clay is compacted

2.1.7 Additional assumptions

In practice, most natural clay soils do not entirely consist of clays. Also, completely
different types of clays may be present in a sample. For simplicity we assume the
clays to be homogeneous.

In some publications, especially where mixture theory is used [86], the clay
setup is modelled using a two-phase description. The pore water and possible
absorbed water are assumed to belong to the fluid phase and the matrix and all
solute particles are in the solid phase. We distinguish three different phases: the
clay matrix, the fluid phase and the dissolved solute. The clay matrix can interact
with the solute by adsorption or cation exchange. The solute under consideration
is in all cases NaCl, hence many simplifications may be applied that hold for 1:1
electrolytes. In Chapter 3, it is shown how a multitude of solutes influences the
equations for chemical osmosis.

Flow of ions through the clay is described using a molecular diffusion coeffi-
cient. In Chapter 4, an example problem shows why mechanical dispersion can be
neglected. Furthermore, the clay soil is in all cases assumed to be saturated with
water.

2.2 Coupled processes and applications

We have seen how microscopic properties of the clay-water system result in the
semi-permeable behaviour of clay membranes. In general we have limited infor-
mation about the structure and composition of a clay, hence it is common to treat
it as a ‘black box’, implying that we attribute certain macroscopic properties to
the sample, e.g. the reflection coefficient and the electro-osmotic permeability. In

14



2.2 COUPLED PROCESSES AND APPLICATIONS 15

the next chapter it is shown how, from non-equilibrium thermodynamics certain
macroscopic driving forces are related to macroscopic fluxes of solvent, ions and
charge by coupling coefficients such as the reflection coefficient. More precisely,
it is demonstrated how, for instance, the macroscopic solvent flux q is related to
gradients of pressure p, chemical potential of solute µs and electrical potential V
as follows:

q = −L11∇p− L12∇µs − L13∇V. (2.21)

Here, gravity was disregarded. A motivation for this is given in Section 4.1. The
coupling coefficients Lij can now be identified as macroscopic parameters. The
coefficient L11 is, by analogy to Darcy’s law, equal to the ratio of the intrinsic
permeability and the viscosity. Chemical osmosis is related to the coefficient L12
that depends on the aforementioned reflection coefficient and the coefficient L13
describes electro-osmosis via the electro-osmotic permeability. This is discussed
in detail in Chapter 3, where a complete overview of the coupled processes in
a soil system is listed, including thermal effects that are ignored in this study.
Subsequently, we review some implications and applications of some of the coupled
processes.

2.2.1 Chemical osmosis

One of the implications of chemical osmosis is the possible decrease of reliability
of clay liners used to store toxic or radio-active waste. In Figure 2.5 a simplified
setup is shown of such a situation. The situation resembles the simple model of a
semi-permeable membrane and a salt concentration gradient, which gives rise to
chemical osmosis. When ca 6= c0, water will flow from low to high concentration
by chemical osmosis, which may have implications for the clay liner. The pressure
inside the repository may increase to a level at which cracks form, which in turn
may lead to leakage. On the other hand, non-charged substances may be advected
with the water flowing outside of the repository to contaminate the groundwater.

An example is given in [106]: when an oil well is drilled, drilling fluid may be
drawn by osmosis into the clay rocks surrounding the wellbore. This can lead to
swelling of the clay and can even lead to complete closure of the wellbore. This
can be prevented by increasing the salt content of the drilling fluid.

The occurrence of chemical osmosis may also lead to problems in the storage
of sludge. As was already pointed out in [63], harbour sludge may act as a semi-
permeable membrane. The main harbour sludge depot in the port of Rotterdam
is called De Slufter. In the study reported in [63], samples were taken from this
site to assess the semi-permeable properties of the sludge. The aforementioned
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waste c0
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Figure 2.5: Simple setup of a clay liner and waste

reflection coefficient was obtained and it was shown how the Slufter-site is an
excellent example of a situation where osmosis might become a hazard. As the top
of the sludge layer is recharged by rain and the bottom is in contact with a salt
water aquifer, water is transported into the aquifer by chemical osmosis, and non-
charged contaminants such as Polycyclic Aromatic Hydrocarbons (PAH’s) can be
advected into the groundwater. The formula for the discharge q [m/s] attributed
to chemical osmosis is discussed later on but reads:

q ∼ νσRT
k

µ

∆c

L
, (2.22)

where L ≈ 20m is the sludge depot thickness, ν = 2, R = 8.314J·mol/K and T =
293 K are the dissociation constant, gas constant and temperature respectively,
∆c ∼ 100 mol/m3 is the salt concentration difference across the sludge, k/µ ∼
10−13m3s/kg is the hydraulic mobility and σ ∼ 0.03 is the reflection coefficient.
With these values, the discharge is approximately q ∼ 1.2·10−10m/s which amounts
to about 2.5 mm/year, which is more than is allowed by Dutch legislation.

Other implications of chemical osmosis are: the occurrence of ‘anomalous’ hy-
draulic heads [89], [77] and thrust faulting [45].

2.2.2 Salt-sieving

Salt-sieving, or hyperfiltration is defined as the non-advective solute flux due to
a pressure gradient. When water is pushed through a semi-permeable membrane,
and ions are electrically restricted, they induce a relative solute flux. In [28], it
was shown how salt-sieving was responsible for calcite precipitation, and copper
deposits in New Mexico may have been formed by this effect as well [119].

16



2.2 COUPLED PROCESSES AND APPLICATIONS 17

There is a large number of applications and literature on reverse osmosis, which
is related to filtration of ions that are restricted by their size. An obvious exam-
ple is desalination: depending on the size of the pores of the membranes, the
corresponding process is called micro-, nano-, or ultrafiltration.

2.2.3 Electrical effects: definitions

In Chapter 3 a table is presented where a number of coupled processes is men-
tioned. Among those are electrophoresis (solute flow by an electrical potential
gradient) and membrane potential (electrical potential caused by a salt concentra-
tion gradient). The former is of minor importance in this study while to the latter,
Chapter 6 is devoted. Two other processes couple hydraulic and electrical effects:
streaming potential is the electrical potential caused by an hydraulic gradient and
electro-osmosis is fluid flow caused by a gradient of electrical potential. Electro-
osmosis is reviewed in one of the following sections. First, its many applications
are listed.

2.2.4 Electrical effects: applications

Using the concept of electro-osmosis, water can be transported by applying an
electrical gradient. In low permeability soils, this process is much more efficient
compared to water transport by an hydraulic gradient. Consider for example a soil
with an intrinsic permeability of k = 10−19 m2, which is a common value for clayey
soils [5], and an typical electro-osmotic permeability [80] of ke = 5 · 10−9 m2/Vs.
Then, a potential gradient of 1 mV/m is equally as effective to induce water flow
as an hydraulic gradient of 5 m/m. In [125],[15], a number of applications is listed.
For instance, undesired seepage along a slope may be counteracted by an electrical
gradient to decrease the water content in the soil and enhance the shear strength.
Similarly, embankments and dams can be stabilized in this way. Also, electro-
osmosis was considered in the investigation of stabilizing the leaning tower of Pisa
[125].

In cases where a metal pipe is drilled in the soil or is used to scoop sludge from
an underwater depot, electro-osmosis can be used to decrease the friction between
metal and soil by creating a thin layer of water that acts as a lubricant [125], [116].
As a matter of fact, it has been proved that the motion of earthworms is actually
enhanced by electro-osmosis. During alternate contraction and expansion of its
body, an electric potential difference exists between the moving and stationary
parts of the worm and soil water will be extracted to the earthworms body surface.
The water film then reduces the friction of motion of the worm.

Electro-osmosis is also used for soil treatment purposes: for instance, contam-
inants can be extracted from a soil sample. In [95] it is shown how this process,
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which is sometimes called soil-washing, can remove contaminants such as heavy
metals with an efficiency up to 93.5%.

When other methods prove to be infeasible or ineffective, electro-osmosis may
be employed to fixate a toxic substance by introducing a reacting agent into the
clay by electro-osmosis that degrades the contaminant, changes it into a non-toxic
or immobile species or enhance stable sorption on the matrix [95].

Clay liners are used to prevent contaminated waste to get in contact with
uncontaminated soil and/or groundwater. Long-term seepage is always a problem
in clay liners and electro-osmosis can be used to counteract undesired flow [125].
This is called an electro-kinetic barrier. However, desiccation followed by forming
of cracks may jeopardize the function of the clay liner.

Another application involves changing the flow pattern of groundwater where
a contaminant plume is present. By electro-osmosis, the groundwater flow can be
manipulated [125] to improve control over the extent and evolution of a plume.

Furthermore, one can use electro-osmosis for in situ analysis of properties of
soils, such as the intrinsic permeability [125].

2.3 Coefficients

2.3.1 Coefficient calculation methods

Obviously, there exists a direct relationship between the microscopic characteristics
of a clay and the macroscopic coefficients. Different theories exist on how to go
from micro-scale to macro-scale. In all cases, some assumptions are made about the
structure of the porous medium. For example, in the first upscaling method under
consideration, the porous medium is assumed to be composed of a solid uniformly
pierced by capillaries filled with a salt solution. In general, the equations valid
locally, are upscaled by for instance, averaging, leading to expressions valid for the
porous medium as a whole. The upscaled microscopic coefficients then relate to
familiar macroscopic coefficients.

In this section, a selection of examples is shown: first, two simple averaging
methods are shown for different assumed geometries of the domain. Second, it is
shown how, by homogenization of the microscopic model, very similar coefficients
are derived.

Gross Osterle

In [41], the transport coefficients for a semi-permeable membrane are derived using
a model consisting of a free solution and a solid consisting of capillary pores of
length l and radius a. The hydrodynamic equations extended with electrochemical
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2.3 COEFFICIENTS 19

forces are stated and subsequently integrated over the capillaries. The resulting
equations are written in the form of the equations as governed by non-equilibrium
thermodynamics. This yields a relationship between the relevant macroscopic and
microscopic parameters.

The concentration ci of ions in the capillaries was given in Section 2.1.5, i.e.

ci = c0e
−ziFψ/RT (2.23)

where F is Faraday’s constant, R and T are the gas constant and the temperature
respectively, zi is the valence of the corresponding ion, c0 is the free solution
concentration and ψ is the electrical potential in the capillaries.

We consider gradients of variables along the axis of a capillary (x-direction) and
perpendicular to that axis (r-direction). The fluid flowing through the capillaries
must obey the following modified Stokes equation:

−∇p̄− F (c+ − c−)∇V̄ + µ∇2v = 0 (2.24)

where p̄ is the total pressure in a capillary, V̄ is the total electrical potential and
v is the fluid velocity along the capillary axis. Using a number of assumptions
and the formulas listed in [41], the axial (x) component of the modified Stokes
equation is integrated twice with respect to the radius of a capillary. The result is
written in the form of integrals times driving forces, yielding:

v =

(

a2 − r2
4µ

)(

−dp0
dx

)

(2.25)

+
1

µ

∫ a

r

1

r2

∫ r2

0

(c+ + c−)r1dr1dr2

(

−RT d ln c
dx

)

(2.26)

+
F

µ

∫ a

r

1

r2

∫ r2

0

(c+ − c−)r1dr1dr2
(

−dV
dx

)

, (2.27)

where p0 = p̄−(c++c−)RT is called the partial pressure and r1, r2 are dummy vari-
ables. The total electrical potential V̄ is the sum of the global electrical potential
V and the local radial potential ψ. The relation between the radial potential and r
is obtained by solving the Poisson-Boltzmann equation, as shown, for a Cartesian
domain, in Section (2.1.5). The total flux trough the capillaries is now obtained
by integrating over the cross-sectional area of the tubes. We can now obtain an
expression for e.g. the global water flux through the porous medium following the
procedure outlined in [41]
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q = −L11
dp

dx
− L12

dπ

dx
− L13

dV

dx
, (2.28)

where p = p0 + π is the global hydraulic pressure, π = 2cRT is osmotic pressure
and Lij are the coupling coefficients. The relevant coupling coefficients are given
by

L11 =
a2

8µ
, (2.29)

L12 =
1

2a2µ

∫ a

0

(a2 − r2)r cosh
(

Fψ

RT

)

dr − a2

8µ
, (2.30)

L13 = − 2εr
a2µ

∫ a

0

r(ψa − ψ)dr, (2.31)

where ψa is the electrical potential at the wall of the capillary.
From the analogy to Darcy’s law, the intrinsic permeability is shown to be a2

8
.

As usual [5], the permeability is given by a shape factor times a length parameter
squared. The other terms are related to the reflection coefficient and the electro-
osmotic permeability: L13 = ke and:

σ = − L12
k/µ

= 1− 4

a4

∫ a

0

(a2 − r2)r cosh
(

Fψ

RT

)

dr. (2.32)

These expressions can be obtained in closed form if the double layer formulas
relating ψ to r are inserted.

Bolt

In Bolt [9], something similar is done for a geometry that is more applicable to
clays: instead of capillaries, rectangular slits are considered. Following the same
steps, an intrinsic permeability is derived that reads:

k =
nb2

3τ
. (2.33)

Here, the porosity n and the tortuosity τ were used to account for the geometrical
constraints of the porous medium as a whole. For comparison with the previous
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expression (2.29), these parameters should be set to one. Finally, the parameter b
is the half-distance between the clay platelets. Obviously, the expression for k is
very similar to the one in the cylindrical domain. The other coupling parameters
are given by

LDV =
n

τb

∫ b

0

(

bx− x2

2

)(

1− 1

u

)

dx, (2.34)

LEV = − nεr
4πτbµ

∫ b

0

(ζ − ψ)
(

u− 1

u

)

dx (2.35)

Here, the subscripts D,V and E denote diffusive, volume and electrical flow re-
spectively. The potential ψm is the electrical potential at the clay platelet. The
parameter u is the Boltzmann factor, appearing as the exponential in (2.23):

c+ = c0e
−FΦ/RT = c0u, c− = c0e

FΦ/RT =
c0
u
. (2.36)

For a simple cartesian domain the relation between u and x yields closed-form
expressions for the reflection coefficient and the electro-osmotic permeability, as is
shown later in this chapter.

Homogenization

In [83], some of the coupling coefficients are derived using an homogenization
procedure. This method of upscaling is an alternative to the REV approach where
instead of smoothing and averaging of functions, a scale parameter, defined to
parameterize the micro-scale equations, is sent to zero [58]. The macroscopic
porous medium is represented by a bounded domain with a periodic structure.
Two length scales are defined: one associated with the size of a pore l, and one
associated with macroscopic size of the porous medium, where heterogeneities can
not be distinguished (L). The ratio of these length scales is the perturbation
parameter ε = l/L and hence assumed to very small (ε ¿ 1). The microscopic
equations, for which ε = 1, are defined on the sub-domains that are the periodic
unit cells dividing the total domain. Macroscopic coordinates x are then related
to microscopic coordinates y by the relation x = εy. Then, the unknowns f ε are
expanded by

f ε = f 0 + εf 1 + ε2f 2 + ... (2.37)
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Following the method of Matched Asymptotic Expansions, the powers of ε are
equated to yield a set of macroscopic equations. These are cleverly rewritten to
obtain familiar forms of the coupled equations. An example is Darcy’s law, which
can readily be derived from upscaling the Navier-Stokes equations [112]. In [83],
additional terms regarding chemical and electro-osmosis are derived by including
electro-chemical terms in the Navier-Stokes equations. The resulting macroscopic
equations allow for different unit cell geometries, leading to different homogenized
coefficients. For clay, it is most suitable to choose the geometry mimicking the
parallel plates setup of the clay. Skipping all intricacies related to their derivation,
we only list here the final expressions for the hydraulic mobility:

Kp =
b2

3µ
, (2.38)

the chemico-osmotic coefficient:

Kc = A ·
{

1

6
+

1

2γ2

(

cosh γ − 1

γ
sinh γ

)}

, (2.39)

A =
Σ2b2

2µεrc0 sinh
2(γ/2)

, (2.40)

γ =
2b

LD
, (2.41)

LD =

√

εrRT

8πF 2c0
=

1

κ0
, (2.42)

and the electro-osmotic coefficient (for a slit):

Ke =
ΣLD
µ

{

2

γ
− coth

γ

2

}

. (2.43)

In these equations, LD is the Debye length, b is the half plane distance, Σ is the
surface charge density, εr is the relative permittivity. The permeability is equal
to the one obtained (in the slit geometry) by Bolt, provided we neglect tortuosity
and set k/µ = Kpn (as v ∼ −Kp∇p in [83] and nv = q ∼ −k/µ∇p in general).

In the following sections, the specific expressions for the reflection coefficient
and the electro-osmotic permeability obtained by homogenization are listed.
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2.3.2 The reflection coefficient

The reflection coefficient σ is the macroscopic parameter that expresses the degree
of semi-permeability of a membrane. As it usually ranges between 0 (passages of
all solutes permitted) and 1 (full restriction of passage of solutes), it indicates how
strongly the membrane ‘reflects’ the solute. It is also called osmotic selectivity
coefficient, osmotic efficiency [124] or chemico-osmotic efficiency coefficient [76].
The name reflection coefficient, and the symbol σ were introduced by Staverman
[110]. The authors of [76] propose to utilize the symbol ω to avoid confusion with
the electrical conductivity and the stress. We use the symbol σ for electrical con-
ductivity consequently with a subscript, and as we hardly consider volume change
of soils, we don’t use the effective stress symbol at all. In [106], the transmission
coefficient λ is defined as λ = 1− σ. Similar to this is the solute permeability (see
Chapter 3) ω from [62], which attains a maximum value for σ = 0 and equals zero
for σ = 1.

The reflection coefficient is usually defined as follows: assume we may write the
specific discharge q as being linearly dependent on an hydraulic pressure gradient
∇p via a coefficient LD and an osmotic pressure gradient ∇π via LDP , then the
reflection coefficient is defined as [72]:

σ = −
(

LD
LDP

)

. (2.44)

The reflection coefficient is dependent on such factors as bulk concentration and
porosity. High efficiencies have been experimentally shown and theoretically pre-
dicted in clay membranes under high overburden pressure, that exhibit low porosity
and are exposed to dilute electrolytes. These properties may be explained by, for
instance, diffuse double layer theory. In the next sections, different theories from
literature regarding the reflection coefficient are presented and discussed.

Typical values of the reflection coefficient

There is a large amount of experimental studies available with respect to the re-
flection coefficient in a wide range of clays and experimental conditions. A nice
review is given in [63]. Measurements in clay rich materials were taken as early as
1961 [65]. Reflection coefficients were obtained for kaolinites [69], smectites [7] and
bentonites [69],[63],[79], in laboratories using direct measurements [68],[63],[67] or
reverse osmosis [7],[29], and in field experiments [89],[31]. Experimental values of
the reflection coefficient range between 0.00002 [4] and 0.99 [44], while values en-
countered for reasonably salty bentonite clays under realistic overburden pressures
are of the order 0.02 [63],[51].
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Simple expressions for σ

Semi-permeability is usually attributed to the electrical restrictions imposed by the
membrane, and hence the reflection coefficient is often calculated using the diffuse
double layer theory that describes the distribution of ions in the clay. Some authors
use size restricting arguments as well, or even exclusively, to obtain an expression
for σ. An example of this is given in [66].

The ‘default’ expression for the reflection coefficient stems from the observation
that the degree of exclusion is related to the relative amount of anions in the pores
[68]:

σ = 1− ca
c0
, (2.45)

where ca is the local anion concentration in the pores and c0 is the bulk salt con-
centration. The anion concentration may be assumed constant [62] or be defined
by the Gouy-Chapman model, for instance. The ratio ca

c0
is actually equal to the

Boltzmann factor u for the anion, as

ca = c0u = c0e
Fψ
RT , (2.46)

where F is Faraday’s constant, ψ is the electric potential in the double layer, and
R and T are the gas constant and the temperature respectively. In [90], the electric
potential ψb in the midplane is substituted in this equation:

σ = 1− e
Fψb
RT . (2.47)

The authors of [90] have given an empirical version of this to improve correspon-
dence with their experimental results:

σ = 1− e
Fψb
RT (1+3e

−Fψb/RT ). (2.48)

Katchalsky and Curran

In Katchalsky and Curran [62], an expression for the reflection coefficient is given:

σ = 1− Kfsw
n(fsw + fsm)

, (2.49)

where the molar salt volume is neglected. Here, fsw is the friction coefficient
between the solute and water, fsm is the friction coefficient between the solute and
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the matrix, n is porosity and K is the coefficient describing the distribution of ions
on the membrane versus the pore solution. If we equal the latter to the Boltzmann
factor u and assume the friction between solute and matrix small compared to
friction between solute and water, i.e. fsm ¿ fsw, then (2.49) reduces to

σ = 1− u

n
, (2.50)

which is the ‘default’ expression corrected for the porosity.
On the other hand, when substituting equation (12.61) from [62] in (2.49),

equation (2.49) is shown to reduce to

σ = 1− cn

Qvt+
, (2.51)

where Qv is excess surface charge and t+ is the cationic Hittorf transference num-
ber. Defining α = n/(Qvt+) transforms the latter expression for σ into

σ = 1− αc. (2.52)

This convenient expression will be used in Chapter 4.

Bresler

In [11], different experimental results are compared with theoretical calculations
based on the method of Bolt, which is discussed later on. Bresler numerically
calculated values of σ for a number of different concentrations, and in Figure 2.3.2
is it shown how this compares to experimental values.

The graph by Bresler has often been used for prediction of reflection coefficients
and hence the fitted line, as shown in the figure, is expressed in terms of b

√
c0,

where b is the water film thickness, i.e. midplane distance:

σBresler =
1

2

(

1− erf

[

0.4(v − 7)√
0.9v

])

, (2.53)

where

v = b

√

cs
1000Ms

, (2.54)

where Ms is the solute molar mass.
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Figure 2.6: Graph by Bresler [11] depicting the dependence of σ on salt concentration

26



2.3 COEFFICIENTS 27

Fritz and Marine

The reflection coefficient of Fritz and Marine [29] is an extension of the expression
of Katchalsky and Curran and is given by

σfm = 1− Ks(Rw + 1)
[(

Rw
ca
cc

+ 1
)

+Rwm

(

Rm
ca
cc

+ 1
)] . (2.55)

The distribution coefficient between solute in the membrane c̄s and solute in the
solution c0 is Ks = ca/c0, and Rw, Rwm and Rm are ratios of friction coefficients.

Bolt

As seen in a previous section, the reflection coefficient can be derived from micro-
scopic theories using equation (2.34):

LDV =
n

τb

∫ b

0

(

bx− x2

2

)(

1− 1

u

)

dx. (2.56)

If we use the regular Boltzmann factor u, then, for a simple 1:1 electrolyte, we
may use the expression for the double layer thickness, derived from the Poisson
equation:

κ0x = − ln

[√
u− 1√
u+ 1

]

+ ln

[√
us − 1√
us + 1

]

. (2.57)

This expression may be used in the formula for the reflection coefficient:

σ = −LDV
LV

= −
∫

(bx− x2/2)
(

1− 1
u

)

dx
∫

(bx− x2/2)dx , (2.58)

introducing

(

1− 1

u

)

=
4t

(1 + t)2
, (2.59)

κ0x = − ln(t/ts, ) (2.60)

κ0δ = − ln(ts) = y, (2.61)

κ0b = − ln(td/ts) = w, (2.62)
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graph number equation description

1 (2.63) exact solution; κ0δ = 0.45
2 (2.63) exact solution; κ0δ = 0
3 (2.67) approximation for large κ0b
4 Bolt [9] (11.40) Kemper estimate for σ
5 Bolt [9] (11.39) approximated integral for σ
6 (2.45) σ for constant Boltzmann factor
7 Keijzer [63] (1.20) different version of Bolt (11.39)

Table 2.2: Graph numbers corresponding to Figure 2.7

so

σ = −
∫

(d1x− x2/2)(1− 1/u)dx
∫

(d1x− x2/2)dx

=
3

(κ0b)3

[

κ0b

∫ td

ts

ln(t/ts)
4

(1 + t)2
dt+

1

2

∫ td

ts

ln2(t/ts)
4

(1 + t)2
dt

]

=
3

(κ0b)3
[A+B] , (2.63)

where

A = 4κ0b

{

td ln(td/ts)

1 + td
+ ln

1 + ts
1 + td

}

, (2.64)

by integration by parts. The same can be applied to

B =
2td ln

2(td/ts)

1 + td
− 4 [L(1 + td)− L(1 + ts)]− 2 ln(td/ts) ln(1 + td), (2.65)

where L(x) is the dilogarithmic function, defined as

L(x) = −
∫ x

1

ln(t)

t− 1
dt =

∞
∑

k=1

(−1)k (x− 1)k

k2
. (2.66)

In [9], a similar calculation is performed but the result is approximated, prob-
ably for the sake of simplicity. Formula (2.63) however, is exact, and in Figure
2.7 we can see how the exact solution compares to the approximate solution given
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Figure 2.7: comparison of different expressions for σ

by Bolt, i.e. the case where the immobile layer is zero, the simple approximation
σ = 1− 1/u and the approximation: td = 0 and ts = 1, yielding:

A ≈ κ0b ln 2, (2.67)

B ≈ −π2/12, (2.68)

σ ≈ 12 ln 2

(κ0b)2
− π2

(κ0b)3
. (2.69)

Homogenization

In Section 2.3.1, we have obtained an expression for the chemico-osmotic coefficient
by homogenization. This coefficient relates to the reflection coefficient as:

Kc = 2σRT
k

µ
. (2.70)

Because Kc is, from equation (2.39):
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parameter unit value

b Å 50
Rw - 1.63
Rwm - 0.1
Rm - 1.8
n - 0.5
ρs g/m3 2.5
Ms kg/mol 0.06
C mol/g 0.001
|ζ| mV 20

Table 2.3: Parameters used in the graph (2.8)

Kc = A ·
{

1

6
+

1

2γ2

(

cosh γ − 1

γ
sinh γ

)}

(2.71)

A =
Σ2b2

2µεrc0 sinh
2(γ/2)

(2.72)

γ =
2b

LD
(2.73)

LD =

√

εrRT

8πF 2c0
, (2.74)

the corresponding reflection coefficient is

σhom =
3

2

(

Fζ

RT

)2
1

cosh2 γ/2

{

1

6
+

1

2γ2

(

cosh γ − 1

γ
sinh γ

)}

, (2.75)

under the assumption of a small diffuse double layer. The validity of this approx-
imation is rather limited, as the expression, as cited from [83] is derived using
the Debye-Hückel approximation (see Section 2.1), valid for larger diffuse double
layers.

Comparison of expressions

In Figure 2.8, curves obtained from various expressions for the reflection coefficient
are compared. Table 2.3 lists the parameters used.
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graph number description

1 Bresler (2.53)
2 FMM (2.55)
3 Simple (2.45)
4 Bolt (2.63) exact solution; κ0δ = 0.45
5 Homogenization (2.75)

Table 2.4: Graph numbers corresponding to Figure 2.8
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Anomalous osmosis, negative values of σ

When a clay sample is subjected to a salt concentration gradient and water flows
from high to low concentration instead of the other way around, this is called
anomalous, abnormal, or negative osmosis. There are roughly two explanations
for this behaviour. When a membrane potential develops due to a concentration
gradient, this may induce electro-osmosis that causes a counterflow decreasing the
flow by chemical osmosis. This flow may, in certain circumstances, even cancel
or reverse the overall flow. In this case, the anomalous osmosis can be easily ex-
plained by electrical effects. However, experiments have shown anomalous osmotic
behaviour even for electrically shorted systems [42]. In [42],[94] it is argued that
the fluid may be dragged along with the ions that move by diffusion, analogous
to electro-osmosis. This depends on the effective transport coefficients of the ions
relative to the water. Anomalous osmosis may even cause the reflection coefficient
to become negative, as is observed in a number of experiments [42],[94].

2.3.3 Electro-osmotic permeability

The coefficient of electro-osmotic permeability ke is the coefficient coupling an
electric potential gradient ∇V linearly to the specific discharge q:

qelectro-osmosis = −ke∇V. (2.76)

As a clay sample is subjected to an electrical potential, the excess cations in the
clay will drag water molecules toward the low potential side, creating an effective
water flow. The counterpart of electro-osmosis is streaming potential, which is
usually represented by the following equation:

Istreaming = −
ke
σe
∇p, (2.77)

where I is the electrical current and σe is the electrical conductivity. Water is
pushed through a clay sample, and the distribution of ions is disturbed; the cations
are dominant and they will be advected downstream, creating an electrical current.

Several theories exist for the description of these two quite interrelated pro-
cesses and the determination of the electro-osmotic permeability. Starting with
the Helmholtz-Smoluchowski theory, which is most often applied in electro-osmosis
problems, we briefly review the Schmid theory, the Spiegler friction model and ion
hydration. Furthermore, the expressions of ke derived using averaging and homog-
enization techniques are mentioned and compared. This overview is taken from
the book of Mitchell [80]
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Helmholtz-Smoluchowski

In 1879, Helmholtz [53] published a paper on the theoretical description on elec-
trokinetic phenomena. The result was refined by Smoluchowski [107] in 1914, and
the theory became later known as the Helmholtz-Smoluchowski theory.

We consider a single water saturated capillary with the walls carrying negative
charge and a immobile cation layer of thickness δ, as shown in Figure 2.9.

plug flow

∆E/∆L

v

}

} δ

Poiseuille flow

∆E/∆L

v
}

} δ

Figure 2.9: Helmholtz-Smoluchowski and Schmid model for electro-osmosis

The mobile cations drag the water along with a constant velocity v because
of an applied electrical potential gradient ∇V . The Lorentz force FL due to this
gradient is balanced by the viscous part of the force FV in the Navier-Stokes
equation due to the friction between the mobile part and the wall:

FL = FV , (2.78)

Σ∇V = µ
v

δ
, (2.79)

where Σ is the charge density, and µ is the fluid viscosity. If we treat the clay
platelet and immobile cation layer system as a parallel plate capacitor and if we
assume a uniform electrical field, we then find that the potential difference between
the imaginary plates of the capacitor is given by

Vcap =
Σδ

εr
, (2.80)

where εr is the relative permittivity of the medium between the plates. The po-
tential Vcap is commonly referred to in clays as the zeta potential ζ, which denotes
in general the potential difference between the no-slip plane and the reference po-
sition (mid-plane). To upscale this equation to a bundle of capillaries, one needs
only to multiply the equation for the flow rate with the porosity n, leading to an
expression for the discharge qel due to electro-osmosis:
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qel = −ke∇V, (2.81)

where ke can now be identified as

ke =
ζεrn

µ
. (2.82)

Note that in some publications (e.g. [52]), the electro-osmotic permeability is
defined as the ratio of flow rate and electrical current at zero pressure. This leads
to the ratio of ‘our’ electro-osmotic permeability and the electrical conductivity,
which we call the streaming potential coefficient. Obviously, these two definitions
have to be distinguished carefully.

Schmid

In the Schmid theory [102], the cations are assumed to be distributed uniformly
across the capillary and the velocity profile is described by the Poiseuille equation.
This implies for the electro-osmotic permeability:

ke =
A0FR

2n

8µ
, (2.83)

where A0 is wall charge concentration per unit fluid volume, R is the capillary
(=pore) radius and F is Faraday’s constant. An interesting conclusion comes
from comparing the Helmholtz-Smoluchowski and the Schmid expression: the lat-
ter depends on the pore radius, contrary to the former. In general, the values
of ke fall in the range ke ∈ (0.2, 1) · 10−8 m2/Vs [9], which indicates an inde-
pendence on pore radius, as clay samples of quite different structure were con-
sidered, and hydraulic conductivity varies in 6 or 7 orders of magnitude. Also,
the Helmholtz-Smoluchowski theory seems to give a better prediction for values
of ke obtained in experiments [80]. These two facts have led to the general appli-
cation of the Helmholtz-Smoluchowski equation as the ‘fundamental‘ equation for
electro-osmosis

Other theories for electro-osmosis

In Mitchell [80], two other theories for electro-osmosis are presented. The first one,
called the Spiegler friction model, assumes an ideal semi-permeable membrane, i.e.
complete exclusion of anions and a concentration dependence of the coefficient of
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Figure 2.10: Occurence of electro-osmotic permeability values in the review by [125]

electro-osmotic permeability. The second theory is called ion hydration; here,
hydration water simply moves along with the ions, and the coefficient of electro-
osmosis is strongly dependent on the transport numbers of the ions. Both theories
have limited applicability in describing electro-osmosis correctly.

Values of ke

The electro-osmotic permeability has been subject of an enormous amount of ex-
perimental studies, which is due to the many applications of electro-osmosis. In
[125] and [96] overviews are given of many experimental results, among which those
of Casagrande [15], Esrig [24] and Gray and Mitchell [35]. In the thesis of Gray
[34], it is shown how many results are either derived using direct measurements on
electro-osmosis or indirectly using results of measurements on streaming potential.
Throughout the literature, people have found that the experimental values of the
electro-osmotic permeability never deviate much from ∼ 3 · 10−9m2/Vs.

In Figure 2.10 the values of ke are shown from the collection as obtained by
Yeung in [125]. A wide range of experimental circumstances is represented: electro-
osmotic permeabilities of very different soils have been obtained, from compacted
to loose, from bentonite to silty clay. The ratio between intrinsic permeability and
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electro-osmotic permeability differs from 10−4 to 105. In [9] it is argued that this
is also an indication that k and ke are hardly related, as intrinsic permeability is
determined by the presence of large pores, whereas the electro-osmotic permeabil-
ity is only dependent on the mobility of countercharges in the smaller pores, no
matter how many large pores may be present. In other words, the electro-osmotic
permeability, contrary to the intrinsic permeability, is hardly dependent on com-
paction or pore structure. This also follows from the Helmholtz-Smoluchowski
formula: only the zeta potential could potentially be highly variable. However,
experimental values of ζ never deviate much from 30mV.

The electro-osmotic permeability ke as derived using averaging

In a previous section we have seen that, using the averaging procedure for a slit
domain according to Bolt [9], the electro-osmotic permeability can be written as

ke =
n

τ
LEV , (2.84)

LEV = − εr
4πbµ

∫ b

0

dx

[

(ζ − ψ)
(

u− 1

u

)]

. (2.85)

For an infinitely extending double layer, in [9] an equation is listed for the relation
between ψ and x:

ψ =
2RT

F
ln coth

κ0x

2
, (2.86)

ζ = ψ(x = δm), (2.87)

κ0x = − ln

[√
u− 1√
u+ 1

]

+ ln

[√
us − 1√
us + 1

]

, (2.88)

where κ0 is the reciprocal Debye length and us is the Boltzmann factor for the
zeta potential. Introducing the following definitions:

κ0x = − ln t/ts, (2.89)

κ0δ = − ln ts = y, (2.90)

κ0b = − ln td/ts = w, (2.91)

1− 1

u
=

4t

(1 + t)2
(2.92)

H =
εrRT

Fµ
, (2.93)
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Figure 2.11: Bolt derivation of ke: comparison of the exact result (2.94) with the
approximation by Bolt

yields the following exact expression for LEV ,

LEV =
4H
w

∫ td

ts

dt

{

ln

(

t

ts

)

+ ln2
(

t

ts

)}(

1 + t2

(t2 − 1)2

)

, (2.94)

=
4H
w

{

w − y
2

ln
(td − 1)(ts + 1)

(ts − 1)(td + 1)
− 3w2

2

td
1− t2d

(2.95)

−1

2
((y − w) ln(1 + td)− y ln(1 + ts)) (2.96)

−1

2
L(td) +

1

2
L(ts)−

1

2
L(1 + td) +

1

2
L(1 + ts)

}

, (2.97)

where, as before, L(x) is the dilogarithmic function (2.66). The particular integral
for ke, as well as for the reflection coefficient σ, is merely approximated in the
book of Bolt [9]. As can be seen in Figure 2.11, the result presented in [9] deviates
from the exact result.

When we pass to the limits ts → 0, td → 1, y → 0, for a small immobile layer
and a large double layer, we find

LEV =
4H
w

{

w

2
ln
ts + 1

1− ts
− π2

4

}

(2.98)

If we now take w → 0, disregard the tortuosity, i.e. ke = nLEV , and rewrite the
argument of the logarithm, then:
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ke = 2Hn ln 1 + ts
1− ts

= 2Hn ln coth y
2
. (2.99)

We have seen in equation (2.87) that the zeta potential can be written in terms of
y, yielding

ke = 2
εrRT

Fµ

F

2RT
ζ =

εrζn

µ
, (2.100)

and hence we find in this limit the Helmholtz-Smoluchowski result.

The electro-osmotic permeability ke as derived using homogenization

As stated in the section on homogenization the expression derived for the electro-
osmotic permeability reads:

Ke =
ΣLD
µ

{

2

γ
− coth

γ

2

}

. (2.101)

For large γ, i.e. small immobile layer, the first term cancels and we find, when
introducing the zeta potential ζ, as in [83]

ζ = −RT
F
ψ0 (2.102)

= −RT
F

ΣFLD
εrRT

coth
γ

2
(2.103)

→ −ΣLD coth
γ

2
= ζεr, (2.104)

that the electro-osmotic permeability reduces to

ke = nKe =
εrζn

µ
, (2.105)

which, again, is identical to the Helmholtz-Smoluchowski equation.

2.3.4 Diffusion coefficient

The diffusion coefficient D or diffusivity represents the direct coupling of a solute
flux Jsd to a concentration gradient ∇c. This is expressed by Fick’s law:
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Jsd = −D∇c. (2.106)

The coefficient D as given here may depend on numerous parameters. For diffusion
of a 1:1 electrolyte such as NaCl, the free diffusion coefficient Df is expressed in
terms of ionic mobilities ui as

Df =
2RT

F

u+u−
u+ + u−

. (2.107)

For a porous medium, this expression has to be adapted for the flow paths of
the ions going through the pores. A quite general way to do this is to define a
formation factor F0, such that

D =
Df

F0
. (2.108)

The formation factor exists in different forms (from [5]):

F0 =
1

nτ
Cornell, Katz [19], (2.109)

F0 =
1√
nτ

Wyllie, Spangler [122], (2.110)

F0 = C(τ)n−m Wyllie, Gardner [121], (2.111)

F0 =
1

nτ 5/6
Winsauer et al [120], (2.112)

F0 = n−m Archie [1], (2.113)

wherem is the cementation index, C(τ) is some function of tortuosity, n is porosity
and τ is the tortuosity: using the definition in [5], in one dimension, τ = (L/Le)

2,
where L is the length of the straight line and Le the length of the tortuous path.

The formation factor is also quite commonly used in the description of the
electrical conductivity.

Implicit coupling

An important concept regarding diffusion in semi-permeable media, is implicit
coupling. This term is introduced in [76]. It implies that when the membrane
is ideal, i.e. completely closed to ions, the diffusion coefficient should vanish as
well. Otherwise, according to Fick’s law, a solute flux would still be possible.
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The precise dependence of the diffusion coefficient on σ, as implied by implicit
coupling, has not been established yet. However, the following expression does at
least satisfy the criteria for limit values of the reflection coefficient:

D(σ) = D0(1− σ). (2.114)

This relation can actually be derived from the equation for the reflection coefficient
as stated by Katchalsky and Curran [62].

Starting from equation (10-56) in [62] for the continuous case:

σ = 1− ω
[

V̄s
k/µ

+
fsw
n

]

= 1− ω · g, (2.115)

where ω is a solute permeability coefficient introduced in [62] and g = V̄s/(k/µ) +
fswn is introduced for convenience. The molar salt volume is V̄s; it is usually
assumed to vanish: V̄s ≈ 0. The friction coefficient fsw can be written as (using
(12-59) and the line after (12-56))

fsw = f+w + f−w =
1

τ

(

1

u+
+

1

u−

)

. (2.116)

In Chapter 3 we will see that we may define, for 1:1 electrolytes

D = 2ωRT. (2.117)

Now:

σ = 1− D

νRT

[

1

nτ

(

1

u+
+

1

u−

)]

, (2.118)

or

D =
2

g
RT (1− σ) (2.119)

= nτ
1

1
u+

+ 1
u−

2RT (1− σ) (2.120)

= nτ
u+u−
u+ + u−

2RT (1− σ) (2.121)

= nτDf (1− σ), (2.122)
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where we used equation (2.107). If we use the first expression for the formation
factor as seen before, we find indeed, using (2.108)

D(σ) = D(1− σ). (2.123)

2.3.5 Cation exchange

The low values of the effective diffusion coefficients observed in experiments can
be attributed to both tortuous pathways, i.e. a high formation factor due to high
compaction, and retardation due to cation exchange. This is the process where
cations in a solute entering a clay soil are exchanged with cations on the clay
matrix. This can be interpreted as a kind of sorption. If we assume this sorption
to be linear, cation exchange can be described by a retardation parameter R that
retards diffusion: [74]

Dr =
D

R , (2.124)

where R = 1 + 1−n
n
ρsKd, ρs is the density of solid, Dr is an effective diffusion

coefficient corrected for retardation and Kd is a distribution coefficient signifying
the relation between the amount of ‘adsorbed’ cations and bulk concentration. The
distribution coefficient may be expressed in terms of the cation exchange capacity
C according to [23]:

Kd = γC, (2.125)

where γ is a constant. The cation exchange capacity is defined as the number of
exchangeable cations required to balance the charge deficiency of a clay. In [63],
[27], the following formula is presented:

cc = ca + Cρs
1− n
n

, (2.126)

where cc and ca are concentration of respectively cations and anions in the double
layers.

The cation exchange capacity is usually expressed in units of [meq/g]=[molc/kg].

In [17] it is shown that adsorption can be considered to be a special case of cation
exchange: the equilibrium relationship, i.e. the exchange isotherm, between the
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amount of ion on the solid qi as a function of the concentration of exchangeable
ion ci in solution is:

qi = f(c0, c1, ....., cn−1) cation exchange. (2.127)

So, for ion exchange, the qi depends on the concentration of all types of cations in
solution. Adsorption is basically equivalent; the difference is that cations are not
exchanged but ‘stick’ to the solid: qi therefore depends only on the concentration
of the same cation species in the solution:

qi = f(ci) adsorption. (2.128)

The electro-neutrality conditions in the solution and on the solid read, respectively:

n
∑

i

ci = c0 solution, (2.129)

n
∑

i

qi = C solid, (2.130)

where c0 denotes the anion concentration in the solution, and C is the cation
exchange capacity, i.e. the number of available exchange sites. This number is
effectively the amount of negative charge of the solid, causing the excess of cations
in solution.

The chemical reaction corresponding to the process of exchange yields a mass
action law (assuming two monovalent cations):

Kij =
qicj
qjci

, (2.131)

where Kij are selectivity coefficients. Combining (2.129) and (2.131) yields

q1 =
K12Qvc1

c0 + (K12 − 1)c1
. (2.132)

This equation shows that ion exchange is described by a Langmuir isotherm.
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2.3.6 Electrical conductivity

The electrical conductivity σe is the parameter that represents the direct coupling
between the electrical current I on an electrical potential gradient ∇V via Ohm’s
law:

I = −σe∇V. (2.133)

For a free 1:1 electrolyte, the electrical conductivity σf is defined as

σf = F (u+ + u−)af , (2.134)

where ui are the ionic mobilities, F is Faraday’s constant and af is the activity
of the fluid. This expression is considered in more detail in Chapter 6. Similar to
the diffusion coefficient for instance, the expression for electrical conductivity of a
porous medium has to be adapted for the geometrical and electrical restraints. A
simple method is to use, again, the formation factor:

σe =
σf
F0
, (2.135)

where σe is the ‘bulk’ electrical conductivity of the system composed of the porous
medium and the interstitial fluid. We have seen expressions for the formation
factor before; σe is usually corrected for geometry using Archie’s law.

In a number of applications, the influence of the charge on the porous medium is
taken into account by a surface diffusion term. In many experiments the following
behaviour is found: when σe is plotted as a function of σf , it increases nonlin-
early (upwards convex) and varies linearly afterwards. This may be explained by
different tortuosities of the surface and the pores. From [103]: As σf increases,
dominant current paths shift from surface to pore... The previous equation can be
adapted for surface effects as follows [118]:

σe = F−1
0 (σf + σχ), (2.136)

where σχ is the conductivity of the exchangeable cations.
An empirical formula for the surface electrical conductivity is given in [118]

and reads

σχ = BQv, (2.137)

Qv = ρsC
1− n
n

, (2.138)
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where Qv is the excess surface charge density, C is cation exchange capacity, n
is porosity, ρs is rock density and B is the mobility of the counter-ions near the
surface, which equals, according to an empirical formula [118]:

B = (1− 0.6e−σf/1.3) · 4.6 · 10−8. (2.139)

In [103] it is shown how theoretical arguments lead to a formulation similar to
(2.136) and (2.137).

In [98] a generalized version of equation (2.136) is given, which reads:

σe = F−1
0 (σf + f(σχ)). (2.140)

For low salt concentrations, (only) the cations are affected by the double layers
and their dominant paths are located in the grain-water interface, whereas the
anions always move in the pore space; at low salt concentrations, their tortuosities
are therefore different; at high salt concentrations, the dominant pathways of the
cations are located in the pore space as well, and conductivity of cations equals
that of anions.

In [98], the function f(σχ) is given by

f(σχ) = t+ + F0ξ +
1

2
(t+ − ξ)



1− ξ

t+
+

√

(

1− ξ

t+

)2

+
4F0
t+

ξ



 , (2.141)

where

ξ =
σχ
σf
≈ 2

3

βs
σf

n

1− nQv. (2.142)

The parameter t+ is the Hittorf transport number for the cation and B is assumed
constant in [98]. This formulation implies a particular expression for the surface
conductivity for low and intermediate porosities. For high porosity, Sen, in [103]
gives the following formula:

ξ ≈ 3

2(3− n)
βsQv

σf
. (2.143)

The model of Groenevelt and Bolt [9] also provides an expression for the electrical
conductivity:
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LE = σe =
n

τ

cf
w

{

2FΛw + Ff(us)

[

8F

µ
+ 2Λ

]}

, (2.144)

where f(us) =
√
us − 2 + 1/

√
us is a function of us = coth2(y/2), y is the relative

thickness of the immobile layer and w is the relative thickness of the double layer.
Tortuosity is τ and the mean mobility of the ions is Λ = (u+ + u−)/2. This
expression can be written in the Waxman-Smits [118] formulation as

σe =
1

F0
(σf + σχ) , (2.145)

where

F0 =
τ

n
, (2.146)

σf = 2FΛcf = F (u+ + u−)cf , (2.147)

σχ =
cfFf(us)

w

(

8Fcf
κ20µ

+ 2Λ

)

. (2.148)

For large double layers (large y) or immobile layers (large w), the surface term
vanishes and only the first term remains.

2.4 Summary
In this chapter it was shown which microscopic properties of clay are responsible
for the semi-permeability of clayey soils and how this leads to the occurrence of
coupled processes in clay such as chemical and electro-osmosis. These processes are
described using macroscopic coefficients such as the reflection coefficient and the
electro-osmotic permeability and equations describing flow of water and transport
of solutes as a result of these coupled processes. An overview of different versions
of these coefficients was given and it was shown how they compare and how their
description can be improved. In the next chapter, the equations are derived and
some of their implications are presented.
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Chapter 3

Equations for chemical and
electro-osmosis in soils

3.1 Introduction

In order to model osmosis in groundwater, we need to obtain the correct parameters
and coefficients, as derived in Chapter 2, and a set of equations, which will be
discussed in this part of the study. Macroscopic transport formulations for direct
and coupled flow of water and solutes can be derived using approaches based
on continuum mechanics [47], homogenization [84], empirical methods and non-
equilibrium thermodynamics. In our study, the latter approach [62],[123] is used.
The general equations are presented first, after which we list the specific forms
of the equations used for modelling chemical osmosis and modelling of combined
chemical and electro-osmosis. Finally, known balance laws are listed to complete
the general overview of relevant equations.

3.2 Non-equilibrium thermodynamics

When a soil system is subjected to one or more gradients of, for example, salt
concentration or electrical potential, it becomes a system out of equilibrium. As
classical thermodynamics is only able to describe initial and final states of spon-
taneous processes, the response to these gradients needs to be formulated using
irreversible or non-equilibrium thermodynamics. This theory was developed in
the 1940’s by Meixner and Prigogine and provides a general framework for the
macroscopic description of irreversible processes [124]. An overview of the theory
is given by [62], [40], [25]; in this study, we follow the derivation of [124].

In non-equilibrium thermodynamics, all laws of classical thermodynamics are
assumed to be valid. To include irreversible processes, the classical theory has to
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be extended with the following assumptions:

• local equilibrium: for every instance, the system can be described as if it
were in local equilibrium, and the equations from thermodynamics, valid for
reversible processes, can then be applied.

• linear phenomenological equations: the fluxes Ji are linear function of driving
forces Xj:

Ji =
∑

j

LijXj (3.1)

and the coefficients Lij that relate them are independent of the driving forces;
in chapter 4 some non-linear theories are discussed

• Onsager relations: the so-called Onsager theorem is assumed to hold: it
states

Lij = Lji (3.2)

or: provided a proper choice is made for the fluxes Ji and driving forces
Xj, the matrix of phenomenological coefficients Lij is symmetric. In a next
section, the validity of these equations is discussed

In non-equilibrium thermodynamics, a central role is played by the entropy balance
equation:

∂s

∂t
= σent −∇ · Js. (3.3)

The entropy s of a volume element changes by entropy flowing into the volume
element (∇ ·Js, where Js is the entropy flux) and by creation of entropy, specified
by the entropy source strength σent. For reversible processes, this term vanishes.

The change of entropy S may be derived from the Gibbs equation, which reads

TdS = dU + pdV −
n
∑

i=1

µidni, (3.4)

where T is temperature, U is internal energy, p is pressure, V is the volume of
the system, and µi and ni are chemical potential and number of moles of species
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i respectively. In [123] it is shown how, by locally differentiating with respect to
time, dividing by the volume and rearranging, this equation can be written as

T
∂s

∂t
=
∂q

∂t
−

n
∑

i=1

µi
∂ci
∂t
. (3.5)

Here, the postulate of local equilibrium is applied: although the total system is not
in equilibrium, within small mass elements a state of local equilibrium exists [40].
The concentration of species i is ci and q is the energy per volume unit transported
into the volume. The first law of thermodynamics, applied to the volume element
v was used: du = dq − pdv, where pdv represents the work done on the volume
element.

To expand the right hand side of this equation, we have the balances of mass
and energy, in the absence of chemical reactions:

∂ci
∂t

= −∇ · Ji (3.6)

∂q

∂t
= −∇ · Jq, (3.7)

where Ji is mass flux and Jq is energy flux.
Introducing these and the entropy balance in (3.5)

T (σent −∇ · Js) = −∇ · Jq +
n
∑

i=1

µi∇ · Ji. (3.8)

Now, according to [62], under isothermal conditions:

T∇ · Js = ∇ ·
(

Jq −
n
∑

i=1

µiJi

)

, (3.9)

so:

Φ = Tσent = −
n
∑

i=1

∇µi · Ji, (3.10)

where we have introduced the dissipation function Φ, which is a measure of dissi-
pation of free energy by irreversible processes [123]. In general this function can
be written as the sum of products of fluxes and driving forces
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Φ =
n
∑

i=1

Ji ·Xi. (3.11)

Using this procedure the expressions for the fluxes and driving forces are defined.

We may introduce the electrochemical potential µ̃i of species i instead of the
chemical potential [62]:

µ̃i = µi + ziFV, (3.12)

where zi is ion valence, F is Faraday’s constant and V is electric potential. This
total electrochemical potential is given by [124]

µ̃i = µi(T ) + V̄ip+ µi(c), (3.13)

where µi(T ) and µi(c) are the temperature and concentration dependent parts of
µ̃i respectively and V̄i is partial volume of species i. In [62] it is shown how (3.10)
is also valid for µ̃i, and so:

Φ = −
n
∑

i=1

∇µ̃i · Ji (3.14)

= −
(

n
∑

i=1

JiV̄i

)

· ∇p−
n
∑

i=1

Ji · ∇ (µi(c) + ziFV ) . (3.15)

Let’s assume we have three species: fluid (f), cation (c) and anion (a). In general,
we may apply the Gibbs-Duhem relation [123], that follows directly from compar-
ing the integrated form of the Gibbs equation with the Gibbs equation itself:

∑

i=f,a,c

ci∇(µi(c) + ziFV ) = 0 (3.16)

This equation implies

∇µf = −
∑

i=a,c

ci
cf
∇(µi(c) + ziFV ), (3.17)
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where we use zf = 0 because of the electro-neutrality of the fluid. Now we define
the solution flux q

q =

(

n
∑

i=1

JiV̄i

)

. (3.18)

Substituting this and the previous result in the dissipation function:

Φ = −q · ∇p−
∑

i=a,c

[(

Ji − Jf
ci
cf

)

· ∇ (µi(c) + ziFV )

]

. (3.19)

We can assume that the solution is dilute enough to write:

q = Jf V̄f + JaV̄a + JcV̄c ≈ Jf V̄f =
Jf
cf
, (3.20)

and we define the ion flux Jdi relative to the solution

Jdi = Ji − ciq. (3.21)

This yields

Φ = −q · ∇p−
∑

i=a,c

Jdi · ∇ (µi + ziFV ) . (3.22)

Now with the electric current density

I =
∑

i=a,c

Jdi ziF, (3.23)

we find

Φ = −q · ∇p− Jda · ∇µa − Jdc · ∇µc − I · ∇V. (3.24)

Equations (3.11) and (3.24) effectively define the fluxes and driving forces and we
may now apply the postulate of linearity of the phenomenological equations:
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Ji =
n
∑

i=1

LijXj, (3.25)

to get the final form of the flux equations considered in this study:

q = −L′
11∇p− L′

12∇µc − L′
13∇µa − L′

14∇V, (3.26)

Jdc = −L′
21∇p− L′

22∇µc − L′
23∇µa − L′

24∇V, (3.27)

Jda = −L′
31∇p− L′

32∇µc − L′
33∇µa − L′

34∇V, (3.28)

I = −L′
41∇p− L′

42∇µc − L′
43∇µa − L′

44∇V, (3.29)

The prime is written to distinguish the coupling coefficients from the coefficients
used in the flux equations in which the flux of salt instead of ions is considered:

q = −L11∇p− L12∇µs − L13∇V, (3.30)

Jds = −L12∇p− L22∇µs − L23∇V, (3.31)

I = −L31∇p− L32∇µs − L33∇V. (3.32)

3.2.1 Validity of the Onsager relations and Saxen’s law

The Onsager relations read: the matrix of phenomenological coefficients is symmet-
ric, i.e. Lij = Lji, as long as the flows and forces appearing in the phenomenological
equations are taken in such a way that

σ =
n
∑

i=1

JiXi. (3.33)
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They are considered by many people to be so fundamental that, in 1968, Lars
Onsager was awarded the Nobel Prize for Chemistry for discovering them. There
is quite a body of literature on theoretical (statistical) derivations of the Onsager
relations [62], [40], [25]. For example, in [40]: ‘These reciprocal relations [ ] reflect
on the macroscopic level the time reversal invariance of the microscopic equations
of motion’. Moreover, numerous experimental evidence indicates the validity of
the relations. Indeed, with many experiments conducted relating to coupled phe-
nomena, the first and foremost goal is to show the equality of coefficients, usually
according to Saxen’s law [101], which is based on the Onsager relations.

However, some authors question the validity of the Onsager relation. Ghassemi
and Diek say in [33]: ‘...,whether Onsager’s reciprocity theorem is valid or [not]
does not need to be verified by experiments’. They base this on the observation
that experimental studies [20] have shown violations of Onsager’s symmetry. They
refer to Heidug and Wong [50], who state: ‘in view of the dispute, it appears
that the Onsager relation cannot claim the status of a general statement, even
though it may be valid in particular situations’. They, in turn, refer to the work of
Truesdell, who ‘denounces’ Onsager symmetry based on theoretical grounds, and
experimental results that show violations, such as [20] and [78]. Also, Auriault and
Strzelecki [2] have shown that Onsager symmetry is only valid if certain pore scale
homogeneity conditions are met. On the one hand, one could argue that because
the amount of experimental evidence in favour of the relations greatly outweighs
the indications against it, the latter experiments should be disregarded. On the
other hand, showing that two very similar coefficients are equal is much easier
than that proving they are different.

If one considers the flux equations in absence of chemical gradients and in terms
of differences in variables, as used by experimenters [80]:

q = L11∆p+ L12∆V, (3.34)

I = L21∆p+ L22∆V, (3.35)

a direct consequence of Onsager’s law, L12 = L21 is

L12
L22

=
L21
L22
→
(q

I

)

∆p=0
= −

(

∆V

∆p

)

I=0

. (3.36)

This was first experimentally shown by Saxen in 1892, and is therefore known as
Saxen’s law [101]. Different versions of this law exist, as the equality between cross
coefficients can be exploited in other ways by setting other variables to zero.

Brun and Vaula [12] have performed experiments, showing the validity of
Saxen’s law in a phenolsulfate membrane subject to KCl solutions of different
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salinity. Also, the law has been validated in works of Miller, Gray [124], Rutgers
and Wijga (in glass capillaries, reported in [71]). Any differences are usually at-
tributed to experimental shortcomings [71]. Many authors, for instance [34] apply
Saxen’s law to convert electro-osmosis data into streaming potential data.

3.3 Equations for chemical osmosis
The types of interrelated coupled flow that can occur in a soil are given in Table
3.3. This table is based on [80]

gradientX→
flow J ↓ hydraulic chemical electrical temperature
fluid hydraulic flow chemical osmosis electro-osmosis thermo-osmosis

Darcy’s law (normal) osmosis

solute ultrafiltration diffusion electrophoresis Soret effect
Fick’s law thermophoresis thermal diffusion

charge streaming potential diffusion potential electrical conduction Seebeck effect
membrane potential Ohm’s law thermo-electricity

heat isothermal heat transfer Dufour effect Peltier effect thermal cond.

Fourier’s law

Table 3.1: Direct and coupled flow phenomena

On the diagonal are the well-known relations between fluxes and driving forces.
The non-diagonal elements correspond to the so-called coupled processes that may
be significant under special circumstances, i.e. in the presence of a semi-permeable
membrane. In this study, we disregard the gravity term in Darcy’s Law. This will
be justified in Chapter 4. Moreover, we assume isothermal conditions; as in [123],
this is justified because temperature gradients are not likely to be significant in
most natural systems. Also, in this section, we restrict ourselves to hydraulic and
chemical gradients. We derive equations for a single solute species for reasons
of brevity. The formulations can be readily extended for a solute consisting of
multiple species following the approach of Malusis and Shackelford [76]. Later on,
when we consider electrical effects, we necessarily have to adopt a description with
separate ionic species. We acknowledge the fact that Darcy’s law is conceptually
very different from Fick’s law (or Ohm’s law, or Fourier’s law), but we nevertheless
exploit the analogy here. With these assumptions, the basic flux equations in terms
of pressure p [Pa] and chemical potential of the solute µs[kgm

2/(mol s2)] are:

q = L11∇(−p) + L12∇(−µs) (3.37)

Jdn = L21∇(−p) + L22∇(−µs), (3.38)
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where q[m/s] is the specific discharge and Jdn[mol/(m2s)] denotes the diffusive
molar flux of solute relative to the solution. Therefore solute molar flux relative
to the porous medium is defined as Jn = Jdn + csq, where cs[mol/m3] is solute
concentration. We can write cs =

ρfω

Ms
, where ρf [kg/m

3] is the fluid density, ω[−]
is the solute mass fraction and Ms[kg/mol] the solute molar mass. The chemical
potential of solute can be expanded as

µs = µ0s + νRT ln as. (3.39)

Here, µ0s is the constant chemical potential for the pure solvent, ν is the dissoci-
ation coefficient (a solute dissociates into ν ions), which equals 2 for NaCl. This
parameter is often omitted [123],[76],[93], but was correctly taken into account in
e.g. [106]. The gas constant is denoted by R[J/(molK)], T [K] is temperature and
as[−] is the solute activity. Taking the gradient of the chemical potential now
yields

∇µs = νRT
1

as
∇as = νRT

ρf
ρs
∇ω, (3.40)

because as = γω
Mf

Ms
, where γ[−] is the activity coefficient,Mf [kg/mol] is the molar

mass of the fluid, and salt mass fraction ω[−] = ρs
ρf

[8]. Here, ρs[kg/m
3] is mass

concentration of solute.
As in [62], the reflection coefficient is defined as the ratio of the coupling coefficient
relating pressure to specific discharge and the coupling coefficient relating osmotic
pressure to specific discharge:

σ = − L12
csL11

, (3.41)

because the osmotic pressure gradient is ∇π = cs∇µs. Employing the analogy
with Darcy’s law, L11 = k/µ yields

L12 = −σcsL11 = −
σkρs
µMs

, (3.42)

where k[m2] is the intrinsic permeability of the porous medium and µ[kg/ms] the
dynamic viscosity of the fluid. This implies

L12∇(−µs) =
σk

µMs

νRTρf∇ω = λρf∇ω, (3.43)
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where we introduce the chemico-osmotic mobility λ = σk
µMs

νRT . This name is
chosen because of the analogy with the electro-osmotic permeability, but we ac-
knowledge the fact that it is related to the hydraulic mobility k

µ
rather than the

intrinsic permeability k.
Using (3.43) in formula (3.37), the specific discharge becomes

q = −k
µ
∇p+ λρf∇ω = −k

µ
(∇p− σ∇π) . (3.44)

The expression for the solute flux can be derived by substituting ∇p from (3.44)
into the equation for the solute flux (3.38), yielding

Jdn = L21∇(−p) + L22∇(−µs)

= L21

(

q

L11
+
L12
L11
∇µs

)

− L22∇µs

= −σρfω
Ms

q+ (σλ
ρfω

Ms

− L22
νRT

ρs
)ρf∇ω,

because applying Onsager’s reciprocity relations yields

L21 = L12 = −
σkρs
µMs

. (3.45)

Analogously to equation (10-23) in Katchalsky and Curran [62], a solute perme-
ability coefficient θ (similar to ω in [62]) is defined:

θ =
L22

νRT
ρs
− σλρfω/Ms

νRT/Ms

= L22/cs − σ2csk/µ. (3.46)

If we interpret θ as a kind of solute mobility, or absolute mobility, as in [62], an
effective diffusion coefficient D = νθRT can be inferred, leading to an expression
similar to Fick’s law. The full equation for solute flux now reads

Jdn = −σρfω
Ms

q−D ρf
Ms

∇ω, (3.47)

or in terms of solute mass flux Jds = J
d
nMs

Jds = −σρfωq−Dρf∇ω, (3.48)
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Writing this equation in terms of gradients yields

Jds = σρfω
k

µ
∇p− σρfωλρf∇ω −Dρf∇ω. (3.49)

The first term represents ultrafiltration: when ∇ω = 0, there is solute flow relative
to water because advection of solute is hindered by the membrane. The second
term arises because the concentration gradient drives fluid flow by osmosis. Solutes
in this flow are reflected by a semi-permeable membrane in the same way as in
hydraulically forced ultrafiltration. The third term represents molecular diffusion:
equation (3.48) reduces to Fick’s law for zero specific discharge.

3.3.1 Effective diffusivity for a semipermeable membrane

As noted above, the effective diffusivity of a semipermeable membrane must be
dependent on σ. The existence of such a relationship was recently mentioned by
Soler [108] and Malusis and Shackleford [76], but not implemented in their model
formulation. The form of the dependency should comply with the following limit-
ing behaviour: D should tend to zero for an ideal membrane and should represent
the conventional meaning of diffusivity for media without membrane properties.
The simplest relationship that is consistent with these two requirements is

D = D0(1− σ), (3.50)

where D is a Fickian diffusion coefficient that includes tortuosity. This expressions
has been derived from previous theories of Katchalsky and Curran [62] in Chapter
2.

3.3.2 Limiting behaviour for σ

Using Js = JnMs as the solute mass flux relative to the porous medium (inserting
(3.50)in (3.48)):

Js = J
d
s + ρfωq = (1− σ)ρfωq−D0(1− σ)ρf∇ω, (3.51)

we observe that for σ = 0, when all membrane properties are absent, this expression
reduces to the traditional advection-diffusion flux. For σ = 1, (3.51) becomes
Js = 0, which accords with the fact that solute transport is completely prohibited
in an ideal membrane. Previous studies, e.g. [82], [124], [80], [108], [76], define
solute diffusive flux as:
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Jdn = σcs
k

µ
∇p−D0(1− σ)∇cs. (3.52)

As the total flux is defined as Jn = Jdn + cq, we find

Jn = −(1− σ)cs
k

µ
∇p+ σ

k

µ
νRT∇cs −D0(1− σ)∇cs. (3.53)

Here, we used our formulation, and assumed, for simplicity,
ρf
Ms
∇ω = ∇cs. Hence,

for σ = 1

Jn =
k

µ
νRT∇cs, (3.54)

which is not appropriate, as indicated before.

3.3.3 Concentration dependence of σ

Experimental work shows that the ideality of natural clayey materials is affected
by several factors such as cation exchange capacity (C), degree of compaction and
solute concentration [63], [29]. Of these factors, the dependence on solute concen-
tration is most amenable for incorporation in the present model. To account for
this effect, a number of theoretical formulations of σ in terms of ion concentration,
water film thickness and C were given in Chapter 2.

3.3.4 Effect of multiple ion species on osmosis

We may write the simple Darcy’s law extended with chemical osmosis:

q = −k
µ
∇p+ λ∇cs. (3.55)

Let’s assume λ = λ′ν = σνRTk/µ to be constant, then, in the case of NaCl, for
instance, the expression can be decomposed as follows:

q = −k
µ
∇p+ λ′(∇cc +∇ca). (3.56)

where cc and ca are cation and anion concentrations respectively. This result can
now be generalized for n ionic species according to Malusis and Shackelford [76]:
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q = −k
µ
∇p+ λ′

n
∑

i=1

∇ci. (3.57)

3.4 Equations for chemico-electro-osmosis
In Section (3.2) we have derived the full set of equations (3.26-3.28) including
electrical gradients and separate ionic fluxes. The time scale of transients of V is
very small compared to that of fluid pressure and mass fraction. This is motivated
in Chapter 4. Temporal changes in V , therefore, are slave to temporal changes
in the other potentials. This behaviour can be approximated by disregarding
electrical flow, i.e. I = 0. In that case, (3.29) can be recast into

∇V = −L
′
41

L′
44

∇p− L′
42

L′
44

∇µc −
L′
43

L′
44

∇µa. (3.58)

Substituting this equation in the flux equations (3.26-3.28) and proceeding as in
Section 3.3 one can derive the modified equation for the specific discharge

q = −Ke∇p+ Λecρf∇ωc + Λeaρf∇ωa, (3.59)

where

Ke =
k

µ
− k2e
σe
, (3.60)

Λei = λi +
uiRTke
σeMs

(3.61)

are a modified hydraulic mobility and chemico-osmotic mobility respectively. The
subscripts i = c, a refer to cations and anions respectively and νcωc + νaωa = νω.
We assumed L′

41 to be equal to the electro-osmotic permeability ke [m
2/Vs] (as in

[124]) and L′
44 to be equal to the electrical conductivity σe [A/Vm] of the porous

medium [124]. Also, electrophoresis is represented by the parameters L′
24 = uccc

and L′
34 = −uaca, where ui [m2/Vs] denotes ionic mobility. Hence the solute mass

fluxes for the cations and the anions are (assuming, as in [124], L′
23 = L′

32 = 0):

Jdcm = −Σcccq−De
cρf∇ωc, (3.62)

Jdam = −Σacaq−De
aρf∇ωa, (3.63)
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where

Σi = −
Λei

RTKe
. (3.64)

In the case of chemical osmosis, we assumed:

L22 = D − σ2c2s
k

µ
. (3.65)

Now, analogously to this, we write for the cations:

L′
22 =

(

De
c −

uc(uc − ua)c2c
σe

)

− (Λec)
2

Ke

c2c
(RT )2

(3.66)

Comparing equations (3.65) and (3.66), we see that they are similar, provided
we account for the electrical corrections of De

c , k/µ and λ (when writing (3.65) in
terms of λ). The anionic diffusion coefficient follows similarly. These expressions
will be further specified in chapter 6.

Again, the diffusion coefficients are assumed to be of the form D0(1 − σ). It is
easy to show how these equations obey desired limiting behaviour for limits of σ
and how they reduce to the set of previous derived equations in the absence of
electrical effects.

There is some discussion regarding the sign of the corrections for electrical
effects in for example the expression for the solvent flux (3.59). In [124], the
coefficient L′

11 is equated to

L′
11 =

k

µ
+
L′
12L

′
21

L′
22

=
k

µ
+
k2e
σe
, (3.67)

where the correction is of a different sign compared to our formulation (3.60).
The difference is explained by noting that we take L′

11 to be the coefficient that
directly relates q and ∇p, i.e.a priori without the electrical effects, whereas Yeung
et al [124] consider this not to be the default experimental situation, and therefore
attribute L′

11 to the term with correction.
However, when considering what actually happens in the soil, it becomes clear

that the sign of the correction should be as we define it. Take the streaming
potential for instance: when a sample is subjected to a negative pressure gradient
(left high pressure, right low pressure), water flows in positive direction as governed
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by Darcy’s law, dragging along excess cations in the direction of low pressure. A
positive electrical potential gradient will therefore develop, causing a counter flow
of water due to electro-osmosis. The correction for streaming potential necessarily
has to be of a different sign than the permeability.

A similar reasoning can be applied to the other terms.

3.5 Mass balances
The macroscopic balance equations, as in [46] for instance, for the water phase
read

∂

∂t
(nρ) +∇ · (ρq) = 0. (3.68)

The macroscopic mass balance equation for the solute phase is:

∂

∂t
(nρω) +∇ · (ρωq) +∇ · Ji = 0, (3.69)

where ω is the mass fraction of solute in the liquid phase.

The process of cation exchange can be introduced in a consistent way [48] if we
assume cation exchange to be a similar process as adsorption, with a general
isotherm

s = s(c), (3.70)

where s is the mass of absorbed solute per unit area of solid matrix. The following
pore boundary condition holds:

∂s

∂t
= (cv + j) · n|A . (3.71)

Not all integrations over the solid-liquid interface disappear when averaging the
microscopic equation. The macroscopic adsorption term remains in the macro-
scopic mass balance:

Û =
1

V

∫

A

(cv + j) · dA, (3.72)
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as

∂

∂t
(nρω) +∇ · (ρωq) +∇ · Ji = −Û . (3.73)

In [48] it is shown how Û can be written as

Û =
∂(1− n)ρsS

∂t
, (3.74)

where ρs is the density of solid matrix, and S is the macroscopic adsorbed mass
fraction. The new mass balance now becomes

∂

∂t
(nρω + (1− n)ρsS) +∇ · (ρωq) +∇ · Ji = 0. (3.75)

Writing concentrations instead of mass fractions, assuming constant porosity and
solid mass density, and assuming a linear isotherm S = Kdc, where Kd is a distri-
bution coefficient, then

α
∂c

∂t
+∇ · (cq) +∇ · Ji = 0, (3.76)

where α = n+ (1− n)ρsKd.

3.6 Summary
We have now made available the full set of equations to model chemical and
electro-osmotic effects in groundwater. In Chapter 2, the processes and coefficients
were discussed, and in this chapter we introduced the relevant flux and balance
equations. In the next chapters, these tools are employed to construct models and
to provide analytical and numerical solutions for equations corresponding to these
models. In Chapter 4, we start with some simple analytical examples to illustrate
what one might expect from modelling of osmosis in groundwater.
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Chapter 4

Mathematical analysis

The equations derived previously are employed to build a model which enables us
to simulate experimental situations. First, however, we discuss some assumptions
and subsequently, we analyze the equations in one dimension. We then show how
they can be simplified and how simple analytical solutions can be obtained that
illustrate general evolution of concentration and pressure in sample problems of
osmosis in groundwater.

4.1 Assumptions
In the next section a justification is given for neglecting mechanical dispersion,
gravity, temperature effects, and the transient part of the equations for charge
conservation.

4.1.1 Peclet number

The Peclet number expresses the ratio between convective and diffusive transport.
For values less than 0.5 [5], dispersion is dominated by molecular diffusion and
mechanical dispersion can be disregarded. The Peclet number is given by

Pe =
|q|L
Dm

≈ kpt
µDm

, (4.1)

where L is a typical length scale and pt is a typical pressure. Molecular diffusion
is, for now, given by Dm, although in the rest of this study we use the symbol D.
If we, for instance, substitute the parameters applicable for the first experiment
in Chapter 6, we find k/µ = 2.3 · 10−15m2, Dm = 2.7 · 10−10m2/s and pt = 3500
Pa, and henceforth Pe= 0.03. This is well below the value of 0.5, implying that
mechanical dispersion may safely be neglected.
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4.1.2 Gravity

In this study, we disregard all gravity effects. In other studies [80], [76] it is shown
how the equations for osmosis include gravity as follows:

q = −k
µ
(∇p− ρg) + λ∇c, (4.2)

where ρ is fluid density and g is acceleration of gravity. Because most experiments
we model were set up to ensure horizontal water flow, the corresponding calcu-
lations are performed on one-dimensional horizontal flow, which excludes gravity
as its vector points in the vertical direction. If we do calculate the influence of
gravity in the case of vertical flow, we are able to show that gravity effects are very
small relative to the pressure gradients that develop. We can present the vertical
component of the specific discharge qz:

qz = −
k

µ

(

∂p

∂x
− ρg

)

. (4.3)

If we consider, for instance, the data from the Keijzer experiment in Chapter 5, and
calculate the ratio of the pressure and the gravity term, where L is the membrane
thickness,

∆p/L

ρg
, (4.4)

we find that, with L = 2.3mm, ∆p ≈ 7000Pa and ρg = 1 · 104kg/(ms)2, this ratio
is 300, implying that gravity may safely be disregarded.

4.1.3 Thermo-osmosis

Temperature effects such as thermal osmosis are disregarded in this work. Ac-
cording to Mitchell [80], thermo-osmosis is described by the following extension of
Darcy’s law, where kT is the thermo-osmotic permeability

q = −k
µ
∇p− kT∇T. (4.5)

Here, chemical and electro-osmosis are neglected. Dividing the hydraulic term by
the thermo-osmotic term, at zero specific discharge, implies:
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− |∇p||∇T | =
kT
k/µ

≡ Γ′. (4.6)

In [22], experimental results were given on Γ′, for different clays, average temper-
atures and overburden pressures. For a strongly compacted bentonite of average
temperature 25oC, a value of Γ′ = 150 was found. Considering the formula (4.6),
this implies that a head gradient of 2 cm/m is still more effective in transporting
water than a temperature gradient of 10oC/m. As such temperature differences
are rarely encountered in soils, we can conclude that thermo-osmosis may be dis-
regarded.

4.1.4 Fluid density

Aside from the pressure dependence we saw earlier, the fluid density depends on
the mass fraction ω and temperature T according to:

ρf = ρ0fe
−βT (T−T0)+γω, (4.7)

where βT is the coefficient of thermal expansion and γ is an experimental constant.
This coefficient of thermal expansion equals βT = 5.0 · 10−4 1/K [73] and γ = 0.69
[73]. An increase of ten degrees Kelvin implies an increase of fluid density of
0.5%. Such temperature differences are seldom observed in soils, thus we may
safely ignore thermal expansion effects. The typical mass fraction in experiments
considered in this study is 0.006. If we take the influence of mass fraction on fluid
density into account, the increase of fluid density is 0.4%, which is, again, too
small to be of any significance.

4.1.5 Timescale of electric relaxation

In this study, we assume the total electrical current to be zero to ensure overall
electro-neutrality, i.e. all contributions to the total electrical current are imme-
diately compensated by other currents. In other words, we assume the timescale
of electric relaxation to be very small compared to the diffusion timescale. To
motivate this, we consider the one-dimensional charge conservation equation:

∂Q

∂t
+
∂I

∂x
= 0. (4.8)

Here, we define: Q = CeffV and I = −σe ∂V∂x , where Ceff is effective capacitance of
the clay system, given by
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Ceff =
εS

L
, (4.9)

where ε is the electrical permittivity, L is a length scale and S is the area of a
sample.

This yields:

nCeff

σe

∂V

∂t
=
∂2V

∂x2
. (4.10)

Non-dimensionalizing, according to x′ = x/L, V ′ = V/V0, t
′ = t/telectric yields

∂V ′

∂t′
=
∂2V ′

∂x′2
, (4.11)

provided we define

telectric =
nCeffL

2

σe
, (4.12)

as the timescale of the problem. For a typical clay sample in this study, e.g. the
sample used in the first experiment in Chapter 6, we have: L = 2.5 mm, n = 0.5,
σe = 0.1 S/m, ε ≈ 5 · 10−11 F/m [99] and S = 2 · 10−3 m2 [63]. Now, the typical
timescale is telectric = 2.5 · 10−15 s.

If we compare this with, for instance, the typical timescale of diffusion, which,
in this case is about tdiff = 4000 s, we conclude that it is useless to consider the
transient behaviour of the electrical potential as such.

4.2 Equations
Summarizing the results of Section 3.3: in the rest of this chapter, we will use the
following flux equations:

q = −k
µ
∇p+ λρf∇ω, (4.13)

Jds = −σρfωq−Dρf∇ω. (4.14)
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4.2.1 Balance equations

The governing microscopic mass balances are averaged over REV’s [46], [73] with
the following assumptions: the REV is constant in space and time, there is no mass
exchange between the fluid and the porous medium, and no chemical reactions
occur, or, in the case of sorption, are accounted for by a bulk diffusivity. This
provides us with the following sourceless continuity equations for isothermal liquid
and solute transport in a porous medium, where n[−] is porosity:

Fluid mass balance

∂nρf
∂t

+∇ · (ρfq) = 0. (4.15)

Salt mass balance

∂nρfω

∂t
+∇ · (ρfωq) +∇ · Jds = 0. (4.16)

4.2.2 Equations of state

Under the assumption that fluid density is solely a function of pressure, i.e. tem-
perature and mass fraction effects on liquid density are disregarded, the equation
of state is given by

ρf = ρ0e
β(p−p0). (4.17)

Here, β is the compressibility of the liquid, ρ0 is the reference value for the fluid
density when p = p0.

The porosity of the porous medium is assumed to be related to the pressure as
follows [73]:

n = 1− (1− n0)e−αp, (4.18)

where n0 is a reference porosity, and α[1/Pa] is the compressibility of the porous
medium.

The storage properties of the solid and liquid phase can be represented by a
single storage parameter Ss = nβ + (1− n)α, in order to be able to write

∂nρf
∂t

= ρf (nβ + (1− n)α)∂p
∂t

= ρfSs
∂p

∂t
. (4.19)
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To get a simple description for the volume change of a soil, we assume this storage
parameter to be constant, as well as the dynamic viscosity of the fluid µ, the
intrinsic permeability k, and the diffusion coefficientD. Finally, in the next section,
the reflection coefficient is also assumed to be constant.

4.2.3 Mathematical analysis

In case of a one-dimensional finite cartesian domain, with q = qx̂ and Jds = Jds x̂,
the balance equations reduce to

∂nρf
∂t

+
∂ρfq

∂x
= 0, (4.20)

and

∂nρfω

∂t
+
∂ρfωq

∂x
+
∂Jds
∂x

= 0, (4.21)

with

q = −k
µ

∂p

∂x
+ λρf

∂ω

∂x
, (4.22)

and

Jds = −σρfωq −Dρf
∂ω

∂x
. (4.23)

Using (4.19), (4.17) and (4.22) in (4.20) and (4.19), (4.17) and (4.23) in (4.21)
yields

nSs
∂p

∂t
+
∂q

∂x
+ βq

∂p

∂x
= 0, (4.24)

and

n
∂ω

∂t
+ nSsω

∂p

∂t
+ (1− σ)∂ωq

∂x
+ (4.25)

(1− σ)βωq ∂p
∂x

− D
∂2ω

∂x2
−Dβ∂ω

∂x

∂p

∂x
= 0.
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We introduce dimensionless variables:

ρ′f :=
ρf
ρ0
, p′ :=

p− p0
pi − p0

, x′ :=
x

L
, t′ := t

k

µSsL2
, q′ := q

Lµ

k(pi − p0)
,

where L is a typical length scale and pi is a typical pressure.
It is convenient to use the molar salt concentration c instead of the salt mass

fraction ω. To justify this change of variable, we write, with Ms is solute molar
mass,

Ms
∂c

∂x
=
∂ρfω

∂x
= ρf

∂ω

∂x
+ ωβρf

∂p

∂x
, (4.26)

or, in dimensionless variables:

∂ρ′fω

∂x′
= ρ′f

∂ω

∂x′
+ β(pi − p0)ωρ′f

∂p′

∂x′
(4.27)

Assuming β(pi − p0) ¿ 1, the last term on the righthand side of (4.27) can be

disregarded, implying ρ′f
∂ω
∂x′

=
∂ρ′fω

∂x′
= Ms

∂c′

∂x′
. A dimensionless concentration c′ :=

c−c0
ci−c0 is introduced, where ci and c0 are respectively an initial and an ambient

concentration. Using similar arguments we find
∂ρ′fω

∂t′
=Ms

∂c′

∂t′
.

In terms of the concentration, the salt mass balance reads

∂nc

∂t
+ (1− σ)∂(cq)

∂x
−D∂2c

∂x2
= 0. (4.28)

Next are the non-dimensionalized mass balance equations. Omitting primes, this
yields for the liquid mass and salt concentration respectively:

n
∂p

∂t
+
∂q

∂x
+ (β(pi − p0))q

∂p

∂x
= 0. (4.29)

n
∂c

∂t
+ nSs(pi − p0)c

∂p

∂t
+ (1− σ)Ss(pi − p0)

∂(cq)

∂x
− SsDµ

k

∂2c

∂x2
= 0, (4.30)

Again, assuming β(pi−p0)¿ 1, the liquid mass balance equation can be simplified,
yielding
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∂p

∂t
+
∂q

∂x
= 0. (4.31)

In addition, the third term of the salt mass balance, which can be regarded as
an advective term, can be disregarded when Ss(pi − p0) ¿ 1 and when (1 −
σ)Ss(pi − p0) ¿ SsDµ

k
, implying λMs(ci − c0) ¿ D, provided q0 = k(pi−p0)

µL
=

λ(ci−c0)Ms

L
. Solute transport is then described by a diffusion equation. The ‘osmotic

Peclet number’ Peos, which is a measure of the significance of (osmotic) advective
transport compared to diffusion, is given by

Peos =
(1− σ)q0L

D
=

(1− σ)λMs(ci − c0)
D

. (4.32)

The non-dimensionalized specific discharge reduces to

q = −∂p
∂x

+
∂c

∂x
, (4.33)

when omitting primes.
Inserting (4.33) in (4.29) and (4.30) yields

∂p

∂t
=

∂2p

∂x2
− ∂2c

∂x2
, (4.34)

∂c

∂t
= ε

∂2c

∂x2
. (4.35)

The parameter ε = SsDµ
kn0

is a dimensionless constant describing the diffusion of the
solute through the membrane on the timescale of the pressure evolution. Since
the effect of changes in porosity due to changes in pressure in the liquid phase are
small, we approximate n by n0.

Such a simple set of coupled equations can be solved by introducing a new
variable φ:

φ := p− 1

1− εc, (4.36)

leading to an ordinary diffusion equation in terms of φ
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∂φ

∂t
=
∂2φ

∂x2
. (4.37)

Solving (4.37) and (4.35), subject to appropriate initial and boundary conditions,
yields expressions for the concentration as well as the pressure.

This method can be applied to model experimental situations, as illustrated in
the following chapters. However, it will be shown that its applicability is limited
to models with small storage parameters.

Next we use this model to derive some analytical solutions for osmosis in
groundwater, after we have listed some additional assumptions that are based
on the previous equations.

4.3 Analytical solutions

In this section, we present some analytical solutions of osmosis problems. Under
the assumptions presented in the previous subsections, the governing dimensionless
equations are:

∂p

∂t
=

∂2p

∂x2
− ∂2c

∂x2
, (4.38)

∂c

∂t
= ε

∂2c

∂x2
. (4.39)

Consider a infinite clay soil, endowed with a scaled diffusion coefficient ε. The
solution of the second equation, subject to the initial condition:

c(x, t = 0) = Heaviside(x), (4.40)

reads, in terms of the similarity variable η = x/
√
t:

c =
1

2
erfc

η

2
√
ε
. (4.41)

Consequently, the pressure equation yields

−η
2
p′ = p′′ − f(η), (4.42)
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where the primes denote differentiation with respect to η. Note that the function
f(η) is given by

f(η) = (
1

2
erfc

η

2
√
ε
)′′. (4.43)

Defining w(η) ≡ eη
2/4p′, we obtain

w′(η) = f(η)eη
2/(4), (4.44)

yielding

w =
e
γη2

4

2ε3/2γ
√
π
+ A, (4.45)

where γ = 1− 1
ε
and

p =
erf η

2
√
ε

2εγ
+ A
√
πerf

η

2
+B, (4.46)

where A and B are integration constants. Passing to the limit t → ∞, implies
η → 0, and we obtain p = 0, and therefore B = 0. Subsequently, in the limit
t → 0, implying η → ∞ and we obtain p = 0, thus A = − 1

2γε
√
π
. Then, the

pressure equation becomes:

p =
1

2εγ

{

erf
η

2
√
ε
− erf

η

2

}

. (4.47)

An alternative way to obtain this result is to introduce a variable φ = p+ 1
εγ
c such

that

∂φ

∂t
=
∂2φ

∂x2
. (4.48)

The solution of (4.48) subject to the imposed boundary and initial conditions,
reads

φ = A
√
πerf

η

2
+B. (4.49)
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Figure 4.1: Similarity solutions for the concentration (left) and pressure evolution
(right)

Obviously, the following expression holds:

φ = p+
1

εγ
c = p+

1

2εγ
erfc

η

2
√
ε
= A
√
πerf

η

2
+B (4.50)

As before, we find p = 0 for η → 0 and η → ∞, so B = 1/(2εγ) and A =
−1/(2εγ√π), yielding expression (4.47).

In Figure 4.1, the general pressure solution as a function of the similarity
variable η is shown for different values of ε. Also, the evolution of pressure at x =
−0.1 is shown. In Figure 4.2 the full solutions of the pressure and concentration in
time as well as in space are displayed. The pressure evolution is shown for small
times, for the purpose of illustration.

In Figure 4.2, the three-dimensional solutions of concentration and pressure
are shown for these simple problems. The position axis was shifted and we chose
ε = 2. In Figure 4.3 the corresponding time profiles are shown for x = 0.

4.3.1 Time scales

In Figure 4.3, the profiles of the pressure and the concentration evolution are
depicted to illustrate the different time scales of the problem. From the graphs we
observe that, in general, the evolution of the concentration is governed by a single
time scale and the evolution of the pressure by two: a fast and a slow time scale.
At first, dp

dt
> 0, and the pressure builds up to a maximum, and subsequently, the

pressure declines (dp
dt
< 0) similarly to the concentration. Let’s consider equations

(4.38) and (4.39). If we associate t with the fast time scale tfast and introduce the
slow time scale τ = εt, we are able to observe the following: in fast time, passing
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Figure 4.2: Three-dimensional plots of the concentration (top) and pressure evolution
(bottom)
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Figure 4.3: Time evolution of the concentration and the pressure

to the limit ε → 0 yields a concentration profile constant in time and a pressure
diffusion equation with a source term related to the second order derivative of the
Heaviside function. In ‘slow’ time, the equations change into:

∂c

∂τ
=

∂2c

∂x2
, (4.51)

ε
∂p

∂τ
=

∂2p

∂x2
− ∂2c

∂x2
, (4.52)

implying that, in the limit ε → 0, the concentration evolution is described by a
diffusion equation, and the pressure is in that case linearly related to concentration.
This is precisely what is observed in the graphs.

4.3.2 Limiting values of σ

To emphasize the applicability, it can be shown that the model yields the expected
pressure profile for limiting values of σ as presented in Katchalsky and Curran [62].
Consider an infinite domain with clay on the negative half plane and a sandy soil
on the positive half plane. The clay is initially saturated with a salt solution of
concentration c = ci, whereas the sand is saturated with fresh water c = 0. The
relevant parameters are listed in Table 4.1. Because of chemical osmosis, water
will be pushed into the clay. The following equations, which are the dimensioned
versions of (4.38) and (4.39), apply:
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nSs
∂p

∂t
=

k

µ

∂2p

∂x2
− λMs

∂2c

∂x2
, (4.53)

n
∂c

∂t
= D

∂2c

∂x2
, (4.54)

where λ is the chemico-osmotic mobility:

λ =
σk

µMs

νRT. (4.55)

When the clay is ideal (i.e. σ = 1), pressure will build up in the clay up to an
asymptotic value. However, when the clay is not entirely restrictive (i.e. 0 < σ <
1), pressure will build up, reach a maximum value, and decline again. This is
shown with an (intuitive) picture in e.g. Katchalsky and Curran [62], but using
our model the exact solution of the pressure p1 in the clay leads to a similar graph.
The solution then reads

p1 = A1 erfc

( −x
2
√
δ1t

)

− A2 erfc
( −x
2
√
D1t

)

, (4.56)

with

A1 =
λciµ

k1

(

1 +

√
Ss1µD1k1
k2

)

, A2 =
λci

(

k1
µ
− Ss1D1

)(

1 + k1
k2

) , (4.57)

where δ = k/µ
nSs

and subscripts 1, 2 refer to the regions clay and sand respectively.
Figure 4.4 shows this solution for the pressure at x = −0.1m for 0 < σ < 1 and
σ = 1 (D1 = 0). The parameters used are displayed in Table 4.1. Figure 4.4 shows
that the model confirms the limiting behaviour for σ.

4.4 Applications of analysis

4.4.1 Influence of coefficients on osmotic pressure

It is rather instructive to see how different coefficients influence the evolution of
osmotic pressure. In Figures 4.5 and 4.6 this is shown for the intrinsic permeability,
the diffusion coefficient, the reflection coefficient and the specific storativity, where
we used equations (4.53) and (4.54). The default case, which is the same in all
graphs, corresponds to the pressure profile for 0 < σ < 1 in Figure 4.4.
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parameter clay (region 1) sand (region 2)

diffusion coefficient D [m2/s] 10−11 10−10

storativity Ss [1/Pa] 10−8 4.6 · 10−10
permeability k [m2] 10−19 10−13

reflection coefficient σ [-] 0.2 -
porosity n [-] 0.5 1
initial concentration ci [mol/m

3] 0.1 0

Table 4.1: Parameters corresponding to Figure 4.4
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Figure 4.4: Comparison of pressure evolution for σ = 1 and 0 < σ < 1
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4.4.2 Concentration dependent reflection coefficient

It is interesting to see how the specific dependence of σ on the concentration affects,
for example, the buildup of osmotic pressure in time. Three different dependencies
of the reflection coefficient on concentration are assumed. The first one allows for
a semi-analytical solution. We first elaborate somewhat on this solution, and
subsequently present the graphs corresponding to all three expressions of σ.

Semi-analytical solution of pressure for a simple σ(c)

First, the analytical method presented in Section 4.3 is used to shed some light on
the case of a concentration dependent reflection coefficient. If we assume that σ
varies with concentration according to a power law cn, then the governing equations
are
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∂p

∂t
=

∂2p

∂x2
− ∂

∂x

[

cn
∂c

∂x

]

, (4.58)

∂c

∂t
= ε

∂2c

∂x2
. (4.59)

This implies that the pressure equation can be written as

∂p

∂t
=

∂2p

∂x2
− 1

n+ 1

∂2cn+1

∂x2
, (4.60)

or, in similarity variable η = x/
√
t:

−η
2
p′ = p′′ − 1

n+ 1
(cn+1)′′, (4.61)

where the primes denote differentiating with respect to η.
Proceeding as in Section 4.3, we assume that c = 1

2
erfcη

2
and g(η) = 1

n+1
(cn+1)′′.

Defining z(η) = eη
2/4p′ implies

z′(η) = g(η)eη
2/4. (4.62)

Integration of this equation yields an expression for the pressure, provided we
apply boundary and initial conditions.

Of special interest is the simple expression for the reflection coefficient we
encountered in Chapter 2:

σ = 1− αc, (4.63)

where α is a number that varies between 0 and 1. This is the simplest possible
expression, proposed by Katchalsky and Curran [62], and Bolt [9] for instance.

Now, the pressure equation is given by

∂p

∂t
=

∂2p

∂x2
− α ∂

∂x

[

(1− αc) ∂c
∂x

]

, (4.64)

If we perform the integration of (4.62), with g(η) = 1
2
(1− αc)′′, we find:
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p =

∫ η

0

dη′

(

e−
η′2

4

[

∫ η′

0

dη′′

{

(e−
η2

4ε )2

2πε
(4.65)

−
η′′e−

η′′2

4ε

[

1− α
2
erfc η′′

2
√
ε

]

2
√
πε3/2











+ C1






e
η′′2

4






+ C2,

where C1 and C2 are integration constants. This integral has to be evaluated
numerically.

Pressure profiles for different expressions of σ(c)

The first graphs, in Figure 4.7, show the pressure buildup and profiles for σ =
1−αc, calculated using the semi-analytical solution of p, for different values of α.
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Figure 4.7: Pressure evolution at x = −0.1 and pressure profile at t = 1 for varying α
when σ = 1− αc

A number of observations can be made from Figure 4.7: as α increases, σ de-
creases and hence, the osmotic pressures, as expected. It is furthermore interesting
to observe that all time profiles pass through a single point in space time and that
the ‘zero pressure point’ in the position graph shifts to the right. This can be
explained by noting that due to different initial concentrations in the left and the
right part of the domain, as implied by the solution c = 1

2
erfcη

2
, the reflection

coefficient varies accordingly.
The next formula used to assess the influence of the choice of σ on buildup

of osmotic pressure, is the approximate formula (11.39a) in [9] we call the simple
Bolt expression, valid for high concentrations. In Chapter 2, it was presented in
formula 2.67:
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σ = a
γ4

c+ γ2
−
(

γ4
c+ γ2

) 3
2

. (4.66)

This is a non-dimensionalized expression, where the following definitions were used:
γ4 =

π4/3

(ch−cl)βb2 , γ2 =
cl

ch−cl , where γ2 is a normalized concentration, ch, cl are the salt
concentrations, respectively the high and low one, b is the double layer thickness
(of order 100Å) and β and a are constants.
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for the simple Bolt description of σ

In Figure 4.8 it is shown how the dependence of the reflection on the concen-
tration according to the simple Bolt expression affects pressure profiles.

The third equation for σ is the full expression defined in the form of an integral,
for which the solution is

σ =
3

(κ0dl)3
[A+B] , (4.67)

where

A = 4κ0dl

{

td ln(td/ts)

1 + td
+ ln

1 + ts
1 + td

}

, (4.68)

and

B =
2td ln

2(td/ts)

1 + td
− 2 [L(1 + td)− L(1 + ts)]− 2 ln(td/ts) ln(1 + td), (4.69)

83



84 MATHEMATICAL ANALYSIS 4.4

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 -10  -5  0  5  10

j1 = 1500

j1 = 500

j1 = 50

position

pressure

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 -10  -5  0  5  10

j1 = 5, j2 = 0

j1 = 5, j2 = 5

j1 = 5, j2 = 0.5

j1 = 50, j2 = 0

pressure

position

Figure 4.9: Pressure evolution at x = −0.1 for the full Bolt description with varying
relative thickness j1 of the immobile layer and relative thickness j2 of the diffuse double
layer

where L(x) is the dilogarithmic function, defined according to formula 2.66.
In Figure 4.9 it is shown how the dependence of the reflection on the concen-

tration according to the full Bolt formula affects pressure profiles. Furthermore,
the influence of varying the relative thickness j1 of the immobile layer versus the
influence of varying the relative thickness j2 of the diffuse double layer is shown.

4.4.3 Optimal osmotic pressure

The osmotic pressure increases linearly with the concentration (difference) when
the reflection coefficient is constant. However, when a concentration dependence of
σ is accounted for, this behaviour changes drastically, as the reflection coefficient
decreases for increasing concentration. Depending on the relation between σ and
c, there must be, in some cases, a maximum osmotic pressure corresponding to an
‘optimal concentration value’. Let’s assume a simple, but realistic expression for
the osmotic pressure:

π = σ(c)νRTc. (4.70)

It is interesting to plot the osmotic pressure for different formulations of σ(c):
the simple expression and the two ‘Bolt expressions’ from Section 4.4.2 and the
Bresler expression for σ as seen in Chapter 2 in formula 2.53. Assuming ν =
2, R = 8.314Jmol/K and T = 298K, the result is displayed in Figure 4.10. Indeed,
most expressions for the reflection coefficient yield an optimal pressure. Only the
simple Bolt expression implies a monotonically increasing pressure as a function of
concentration, analogous to the case of a constant reflection coefficient. This again
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shows the relevance of the concentration dependence of the reflection coefficient.
We expect the osmotic pressure to be optimal for a particular concentration, as
the double layer break down at higher concentrations. Models for σ, such as the
simple Bolt expression, that do not obey the physics in this respect, can therefore
be disregarded.
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Figure 4.10: Comparison of osmotic pressure profiles as a function of concentration
for different expressions of the reflection coefficient.

4.4.4 Tracer

Next we consider the following problem. A tracer is released in a domain that
consists of clay saturated initially with a salt concentration c1 in the negative
half plane, and salt water with concentration c0 in the positive half plane. In the
water region, the tracer is allowed to diffuse freely, whereas in the clay, not only
is diffusion hampered by the porous medium, also an advective flux caused by
chemical osmosis will influence the spreading of the tracer in the clay.

At t = 0, the tracer is injected at x = 0. The concentration is B and the
diffusivity of the tracer is DB. Now, the simple advection-diffusion equation for
the tracer is formulated as

∂B

∂t
=

∂Bq

∂x
+DB

∂2B

∂x2
, (4.71)

t = 0, B =Mδ(x). (4.72)
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where chemical osmosis is responsible for the advection velocity q.
Introducing the non-dimensional variables

B̃ :=
B

M
, x̃ =

x

L
, q̃ = q

L

λc0
, t̃ =

t

t1
=
tλc0
L2

, ζ :=
DB

λc0
, (4.73)

yields, after dropping tildes

∂B̃

∂t̃
=

∂B̃q̃

∂x̃
+ ζ

∂2B̃

∂x̃2
. (4.74)

The tracer concentration was normalized according to the initial tracer concentra-
tion and other variables were defined as in Section 4.2.

The diffusion of salt and pressure buildup by chemical osmosis are described
by equations (4.38) and (4.39). We assume the same nondimensionalized solutions
for the pressure and concentration: c = 1

2
erfcη

2
, p = 1

2γε
(erf η

2
√
ε
− erfη

2
) with the

similarity variable η = x̃√
t̃
.

Next we make the similarity transformations B̃(x̃, t̃) = φ(η)/
√
t̃ and q̃(x̃, t̃) =

g(η)/
√
t̃. As the non-dimensionalized specific discharge is q̃(x̃, t̃) = ∂

∂x̃
(c − p),

this implies g(η) = (c − p)′, where ()′ denotes differentiation with respect to η.
Consequently, the tracer diffusion equation becomes

−1

2
(φη)′ = (φg(η))′ + ζφ′′, (4.75)

Integration of (4.75) yields

−1

2
φη = φg(η) + ζφ′ + A, (4.76)

where the integration constant A vanishes, when applying appropriate boundary
conditions, i.e.:

φ(−∞) = φ(+∞) = 0. (4.77)

Therefore:

ζ
dφ

dη
+ φ

(

g(η) +
η

2

)

= 0. (4.78)
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This yields:

φ = C1e
− η2

4ζ
− 1
ζ

∫

g(η)dη, (4.79)

where C1 is another integration constant. As we have found g(η) = (c − p)′,
equation (4.79) becomes

φ = C1e
− η2

4ζ
− 1
ζ
(c−p). (4.80)

The integration constant can be found by noting that the mass M of tracer is
conserved, implying

M =

∫ ∞

−∞
B̃(x̃)dx̃ =

∫ ∞

−∞
φ(η)dη. (4.81)
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Figure 4.11: Tracer concentration profiles for different times and with and without
osmosis

Unfortunately, the resulting integral can not be solved using analytical tech-
niques. We can, however, obtain a numerical estimate. We assume ζ = 1, ε =
0.1,M = 1. Conservation of mass yields

1 = C1

∫ ∞

−∞
e−

η2

4
−(c−p)dη, (4.82)
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or

C1 = 0.45. (4.83)

Using B̃ = φ/
√
t̃, we finally obtain

B̃ =
0.45√
t̃
e−

η2

4
− 1
2
(c−p). (4.84)

The profile of the tracer concentration is now displayed in Figure 4.11. The effect of
chemical osmosis is obvious in the redistribution of the tracer profile. This implies
that osmosis can be responsible for unexpected displacement of contaminants.

4.5 Conclusions
We have seen how from the information derived from Chapters 2 and 3, we can
build a mathematical model in which the expected simultaneous buildup and de-
cline of pressure and the evolution of concentration can be simulated. In the next
chapter, we will see how this model holds in reality: results of experiments from
literature are compared with modelling results. The emphasis is on the range of
applicability of the model. In which circumstances can we use simple closed form
analytical solutions and when must we resort to numerical solutions?
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Chapter 5

Comparison with experiments 1

5.1 Introduction

It has been known since the 19th century that low-permeable sediments may ex-
hibit membrane behaviour. From the 1960’s to the present, extensive evidence
has been gained that clay can restrict solute transport relative to the flow of wa-
ter (e.g., [4], [29], [126], [93], [63], [89], [16]). This property of clay gives rise to
chemical osmosis (fluid flow in response to a chemical gradient) and ultrafiltration
(solute sieving driven by an hydraulic gradient). They are called coupled flow phe-
nomena to distinguish them from direct flow phenomena such as fluid flow due to
an hydraulic gradient. These phenomena may be significant in contaminant trans-
port through natural and artificial barriers [107] and they have been suggested to
play a role in the generation of high overpressures in aquifers [89].

Chemical osmosis and ultrafiltration are most pronounced for ‘ideal’ mem-
branes that totally inhibit passage of solute. However, natural clays typically only
partially restrict solute passage: the degree to which membranes are permeable
to solute is expressed by the dimensionless ‘reflection coefficient’ σ [110], [68] that
ranges from 0 for non-membranes to 1 for ideal membranes.

The origin of the membrane properties of clays and shales is mostly attributed
to the so-called diffusive double layers associated with clay platelets [80], [91]. The
double layers are formed by ‘clouds’ of cations that are in electrostatic equilibrium
with the negatively charged clay platelets. Especially when compacted, the water
film between the platelets is completely dominated by the overlapping double
layers and imposes electrical restrictions that are responsible for the membrane
behaviour.

1This is a modified transcription of the paper S. Bader, H. Kooi 2005 Modelling of solute
and water transport in semi-permeable clay membranes: comparison with experiments Advances
in Water Resources 28 203-214
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Macroscopic transport formulations for direct and coupled flow of water and
solutes can be derived using approaches based on continuum mechanics, homog-
enization [84], empirical methods and non-equilibrium thermodynamics. In our
study, the latter approach [62],[123] is used. Previous studies have mainly devel-
oped equations to infer membrane efficiencies from laboratory experiments that
have been conducted under conditions of steady flow [16] or no flow [63]. Also,
pressure and concentration measurements have been performed in reservoirs adja-
cent to the membrane. These two conditions implied that modelling was usually
restricted to discontinuous formulations describing steady state behaviour (see also
[92]). Consequently, inferred values of σ are averaged values that integrate across
the finite membrane thickness.

Only in a few studies, continuum models of transport through semipermeable
membranes have been developed to study transient behaviour. In [82], Mitchell et
al. used a one-dimensional model to investigate the pore pressure reduction in a
clay layer subjected to saline boundary conditions at top and bottom. The authors
focused on chemico-osmotic consolidation of the layer and only presented non-
dimensionalized and spatially averaged pore pressure and concentration changes
in the clay layer. In a similar study, Greenberg et al. [36] simulated settlement
due to consolidation of a confining layer in the Oxnard basin, California, follow-
ing seawater intrusion into a contiguous aquifer. More recently, Soler [108] used
a one-dimensional model to study the role of coupled transport phenomena, in-
cluding thermal osmosis, in radionuclide transport from a repository of high level
nuclear waste in the Opalinus Clay, Switzerland. The model was reduced, however,
to a conventional advection-diffusion equation with a constant advection velocity,
thereby negating the feedback of temporal and spatial changes in the concentration
gradients on osmotic transport. Sherwood [106] performed transient flow calcula-
tions expressed in terms of pressure and salinity values on either side of a membrane
and therefore greatly simplified the full transient flow and transport behaviour
within the membrane. In [32], Ghassemi and Diek described shale deformation
due to chemo-mechanical processes, but their model disregards ultrafiltration and
does not properly describe limiting behaviour of the reflection coefficient. Malusis
and Shackelford [76] presented a more extensive model that includes multiple ionic
species and cation-exchange. In their model the phenomenological coefficients are
expressed in terms of conventional and measurable porous media parameters as
derived by Yeung [123] and Yeung and Mitchell [124]. Unfortunately, Malusis and
Shackelford [76] only presented model simulations in which membrane effects were
set to zero. None of the above models account for the strong dependence of σ on
the local concentration as described by Bresler [11].

The above discussion shows that a lot of progress still can be made both in the
development of continuum models of coupled flows and in their application. Such
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models are needed not only to exploit the information that resides in measurement
of transient conditions in laboratory experiments, which are currently ignored,
but also to make realistic predictions of the temporal and spatial development
in natural or engineered groundwater systems. We recently presented a model
of chemically and hydraulically coupled flow that overcomes most of the above-
mentioned limitations and, to our knowledge, modelled for the first time transient
data obtained from a laboratory experiment on chemical osmosis [30]. In [70] it
was shown that the model further replicates the general behaviour observed in
laboratory ultrafiltration experiments on semipermeable membranes.

In this study, a continuum model for chemico-osmotic transport in groundwater
is formulated. The derived flux equations are inserted in the mass balance equa-
tions for coupled groundwater and solute transport. Next, the model is simplified
and analytical solutions are presented of problems corresponding to two exper-
iments from literature. In both cases, extra simplifying assumptions are made
compared to the full models to show the applicability of the model. In one ex-
periment [63], to which we will refer as “experiment A”, the evolution of pressure
and salinity was measured in a bentonite clay membrane subjected to a salt con-
centration gradient. The experimental setup was such that a uniform flow was
present and a one-dimensional version of the governing equations can be used. In
the second experiment under consideration [89], a borehole, drilled in a clay soil,
was filled with an NaCl solution to induce flow of water from the clay into the
borehole. Consequently, we will refer to this experiment as “experiment B”. The
model consists of the cylindrical borehole and the clay in the surrounding annulus.
Numerical studies of both experiments have been documented [30],[70]. It will be
shown that under certain conditions, the equations can be simplified in such a way
that approximate solutions can be found that match adequately the full numeri-
cal as well as the experimental results. For experiment A this is straightforward.
However, for experiment B, we demonstrate the limitations of this approximation.

5.2 Theory

As was discussed in Chapter 3, the equations presented here are based on non-
equilibrium thermodynamics. As classical thermodynamics only describes initial
and final states, transport processes such as diffusion of a solute in a soil need to
be analyzed using non-equilibrium thermodynamics. We assume the validity of
the laws of classical thermodynamics [40],[124], as well as the postulates of local
equilibrium and linearity of the phenomenological equations.

Starting with the linear phenomenological equations relating driving forces Xj

to fluxes Ji
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Ji =
n
∑

j=1

LijXj, (5.1)

where Lij are the coupling coefficients that relate flows of type i to gradients of
type j. In soil processes, the relevant driving forces are gradients in pressure, con-
centration, electrical potential and temperature. We restrict ourselves to hydraulic
and chemical gradients. With these assumptions, the basic flux equations in terms
of pressure p [Pa] and chemical potential of the solute µs[kg/(ms2)] are:

q = L11∇(−p) + L12∇(−µs) (5.2)

Jdn = L21∇(−p) + L22∇(−µs), (5.3)

where the specific discharge is q[m/s] and Jdn[mol/(m2s)] denotes the diffusive
molar flux of solute relative to the solution. Therefore solute molar flux relative
to the porous medium is defined as Jn = Jdn + csq, where cs[mol/m3] is solute
concentration. We can write cs =

ρfωs
Ms

, where ρf [kg/m
3] is the fluid density, ωs[−]

is the solute mass fraction and Ms[kg/mol] the solute molar mass. The gradient
of the chemical potential now yields

∇µs = νRT
1

as
∇as = νRT

ρf
ρs
∇ω, (5.4)

because the solute activity as = γω
Mf

Ms
, where γ[−] is the activity coefficient,

Mf [kg/mol] is the molar mass of the fluid, and salt mass fraction ω[−] = ρs
ρf

[8]. Here, ρs[kg/m
3] is density of solute, ν is the dissociation coefficient, the gas

constant is denoted by R[J/(molK)], and T [K] is temperature.
As in [62], the reflection coefficient is defined as the ratio of the coupling coef-

ficient relating pressure to specific discharge and the coupling coefficient relating
osmotic pressure to specific discharge:

σ = − L12
csL11

, (5.5)

because the osmotic pressure gradient is ∇π = cs∇µs. Employing the analogy
with Darcy’s law, L11 = k/µ yields
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L12 = −σcsL11 = −
σkρs
µMs

= λρf∇ω, (5.6)

where k[m2] is the intrinsic permeability of the porous medium, µ[kg/ms] the
dynamic viscosity of the fluid and

λ =
σk

µMs

νRT. (5.7)

The specific discharge now becomes

q = −k
µ
∇p+ λρf∇ω. (5.8)

The expression for the solute flux can be derived by substituting ∇p from (5.8)
into the equation for the solute flux (5.3), yielding

Jdn = L21∇(−p) + L22∇(−µs)

= −σρfω
Ms

q+ (σλ
ρfω

Ms

− L22
νRT

ρs
)ρf∇ω,

because applying Onsager’s reciprocity relations yields

L21 = L12 = −
σkρs
µMs

. (5.9)

Analogously to equation (10-23) in Katchalsky and Curran [62], a solute perme-
ability coefficient θ (similar to ω in [62]) is defined:

θ =
L22

νRT
ρs
− σλρfω/Ms

νRT/Ms

= L22/cs − σ2csk/µ. (5.10)

As in [62], we infer an effective diffusion coefficient D = νθRT , leading to an
expression similar to Fick’s law. The full equation for solute flux now reads

Jdn = −σρfω
Ms

q−D ρf
Ms

∇ω, (5.11)

or in terms of solute mass flux Jds = J
d
nMs

Jds = −σρfωq−Dρf∇ω, (5.12)
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5.3 Analysis

5.3.1 Balance equations

The following balance equations are used, where n[−] is porosity:

Fluid mass balance

∂nρf
∂t

+∇ · (ρfq) = 0. (5.13)

Salt mass balance

∂nρfω

∂t
+∇ · (ρfωq) +∇ · Jds = 0. (5.14)

5.3.2 Equations of state

Under the assumption that fluid density is solely a function of pressure, i.e. tem-
perature and mass fraction effects on liquid density are disregarded, the equation
of state is given by

ρf = ρ0e
β(p−p0). (5.15)

Here, β[1/Pa] is the compressibility of the liquid, ρ0[kg/m
3] is the value for the

fluid density when p = p0, where p0 is a reference pressure.
The porosity is related to the pressure as follows [73]:

n = 1− (1− n0)e−αp, (5.16)

where n0 is a reference porosity, and α[1/Pa] the compressibility of the porous
medium.

The storage properties of the solid and liquid phase can be represented by a
single storage parameter Ss = nβ + (1− n)α, in order to be able to write

∂nρf
∂t

= ρf (nβ + (1− n)α)∂p
∂t

= ρfSs
∂p

∂t
. (5.17)

To get a simple description for the volume change of a soil, we assume this stor-
age parameter constant, as well as the dynamic viscosity of the fluid µ, intrinsic
permeability k, and the diffusion coefficient D. Finally, in the next section, the
reflection coefficient is also assumed to be constant.
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5.3.3 Mathematical analysis

In case of a one-dimensional finite cartesian domain, with q = qx̂ and Jds = Jds x̂,
the balance equations reduce to

∂nρf
∂t

+
∂ρfq

∂x
= 0, (5.18)

∂nρfω

∂t
+
∂ρfωq

∂x
+
∂Jds
∂x

= 0, (5.19)

with

q = −k
µ

∂p

∂x
+ λρf

∂ω

∂x
, (5.20)

Jds = −σρfωq −Dρf
∂ω

∂x
. (5.21)

In Chapter 4, it was shown by dimensional analysis that, provided relative storage
parameters are small, the non-dimensional versions of these equations reduce to

∂p

∂t
=

∂2p

∂x2
− ∂2c

∂x2
, (5.22)

∂c

∂t
= ε

∂2c

∂x2
, (5.23)

where the parameter ε = SsDµ
kn0

is a dimensionless constant describing the diffusion
of solute through the membrane on the timescale of pressure evolution. Since the
effect of changes in porosity due to changes in pressure in the liquid phase are
small, we approximate n by n0.

Such a simple set of coupled equations may be solved by introducing a param-
eter φ:

φ := p− 1

1− εc, (5.24)

leading to
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∂φ

∂t
=
∂2φ

∂x2
. (5.25)

Solving (5.25) and (5.23), subject to appropriate initial and boundary conditions,
yields expressions for the concentration as well as the pressure.

This method can be applied to model experimental situations, as illustrated in
the following sections. It will be shown that it’s applicability is limited to models
with small storage parameters.

5.4 Modelling experiments: analytical and numeri-
cal results

In this section, a laboratory experiment (A) by Keijzer [63] is modelled, as well as
a field experiment (B) conducted by Neuzil [89]. In both models the assumptions
of sections 2.2 and 2.3 are imposed.

5.4.1 Keijzer experiments

Experimental setup

In [64],[63] Keijzer reports an experiment to investigate the semi-permeable be-
haviour of naturally occurring clayey materials. He subjected a sample of commer-
cially available bentonite clay to a salt concentration gradient and used a flexible
wall permeameter to measure differential pressure and concentration development
over the clay membrane in order to show osmotic behaviour and to assess the
value of the reflection coefficient. His results showed a buildup of pressure at one
side of the membrane followed by a eventual decrease. The experimental set-up
consists of a clay sample confined by two porous stones such that a uniform flow
of a salt solution through the clay can be induced. They separate the clay from
a (closed) reservoir with high salt concentration solution and an (open) reservoir
containing the low salt concentration solution. In Figure 5.1, the set-up is shown
schematically. We divide the modelling domain I into three parts, two containing
the porous stones, and one representing the clay membrane. We will define I as the
interval [−L, b], where the origin is imposed at the intersection of the left porous
stone and the membrane and the point a is located at the intersection between the
right porous stone and the membrane. Furthermore a, b, L > 0. All subscripts will
refer to the three regions as shown in Figure 5.1. Also in Figure 5.1, the values of
the model parameters are given.

96



5.4 RESULTS 97

0
x 

ba

clayporous 
stone

porous 
stone

water
high c

water
low c

parameter value in clay value in porous stone
ci (mol/l) 0.1 0.1 (l), 0.01 (r)
n(−) 0.5 0.56
k (m2) 1.2 · 10−19 1 · 10−13
D(m2/s) 2.6 · 10−13 1.2 · 10−10
T (oC) 25 25
Ss(1/Pa) 1 · 10−8 3.4 · 10−6
σ(-) 0.019 0
length (mm) a = 2.3 b− a = 7.2

Figure 5.1: Modelling domain Keijzer experiment and relevant parameters

Most of them are taken from [63]. The pressure data from this experiment
were fitted according to a least squares method and the unknown diffusion coeffi-
cient and storage parameter were chosen based on this best fit to the data. The
storage coefficient in the porous stones is assumed to be higher than in the clay
to account for the potentially much larger storage capacity of the porous stones
due to their expansion/contraction upon pressure increase/decrease [87]. The dif-
fusion coefficient in the clay is quite low, as it is in the work of Sherwood [106] and
Keijzer [63], because of the compactness of the clay and retardation due to cation
exchange. To be able to simplify the equations, we assume that β(pi − p0) and
Ss(pi− p0)¿ 1 and λMs(ci− c0)¿ D(1− σ). This implies that equations (5.22),
(5.23) can be employed. The last assumption is not justified based on the values
of the parameters in Figure 5.1. However, on the timescale of pressure evolution,
diffusion and advection through the clay are rather small; their relative behaviour
is then, especially for small times, of minor importance.

Solution

We use the solution method described in Chapter 3. For this specific model, we
use the following set of equations:

niSs
∂pi
∂t

=
ki
µ

∂2pi
∂x2
− λiMs

∂2ci
∂x2

, (5.26)

ni
∂c

∂t
= Di

∂2ci
∂x2

, (5.27)

where the index i = 1, 2, 3 designates respectively the porous stone at the left side
in Figure 5.1, the clay membrane, and the porous stone at the right side in Figure
5.1. These regions will be referred to as regions 1, 2 and 3 respectively.

To solve this set of equations, a new variable φi is introduced:
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φi(x, t) =
ki
µ
pi(x, t)−

λiMs

1− εi
ci(x, t), (5.28)

which leads to:

∂φi
∂t

= di
∂2φi
∂x2

(5.29)

where di =
ki

µn0iSs i
. As before, the porosity is assumed to be constant.

Initially, the left porous stone, as well as the clay membrane are saturated with
the salt solution, implying the initial conditions:

p(x, 0) = 0 for x ∈ I, (5.30)

and

c(x, 0) =

{

ci for x ∈ (−L, a)
c0 for x ∈ (a, b)

(5.31)

The boundary conditions are

x = −L :

{

∂c1
∂x

= 0
∂p1
∂x

= 0
x = b :

{ ∂c3
∂x

= 0

p3 = 0
(5.32)

We assume continuous flux, pressure and concentration at the interfaces between
the clay and the porous stones.
The transformed initial and boundary conditions are

φ1(x, 0) = 0, φ2(x, 0) = c0, φ3(x, 0) = 0, (5.33)

x = −L :
∂φ1
∂x

= 0, x = b :
∂φ3
∂x

= 0. (5.34)

To obtain the boundary conditions for the interface between the porous stones and
the clay, we impose continuity of the volume flux q:

x = 0 : q1 = q2, x = a : q2 = q3, (5.35)
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implying

x = 0 :
∂φ1
∂x

=
∂φ2
∂x

+
ελMs

1− ε
∂c2
∂x

, x = a :
∂φ3
∂x

=
∂φ2
∂x

+
ελMs

1− ε
∂c2
∂x

(5.36)

and

φ1 =
k1
µ
p1 =

k1
µ
p2 =

k1
k2

(φ2 +
λMs

1− εc2) atx = 0, (5.37)

φ3 =
k3
µ
p3 =

k3
µ
p2 =

k3
k2

(φ2 +
λMs

1− εc2) atx = a. (5.38)

Using all boundary, interface and initial conditions, we can solve (5.28) and (5.27)
using Laplace transformation techniques for finite regions, see for example [13]. A
Matlab routine [57] is used to solve the inverse Laplace transform problem.

In Figure 5.2, the evolution of mass fraction and pressure at the intersection
of the membrane and the left porous stone is shown. It clearly shows an increase
and subsequent decline of pressure due to osmosis and diffusion respectively. In
Figure 5.3, the mass fraction and pressure profiles over the membrane are given, at
different time levels. Mass fraction is plotted because it is the original independent
variable in the model.

Numerical solution

Using the scripted finite element builder and numerical solver FlexPDE [26], the
full equations (5.13) and (5.14) were modelled numerically. Details about this
work can be found in [70]. Figure 5.4 shows the comparison of these numerical
solutions with the results of the analytical modelling. The agreement is excellent,
which justify the imposed simplifying assumptions.

Figure 5.5 shows the comparison of the modelling solutions for the pressure evo-
lution at the interface between the left porous stone and the clay, with the results
of the experiment conducted by Keijzer [63]. Unfortunately, valid mass fraction
data for this experiment were not available, so the storage parameter as well as
the diffusion coefficient were adapted to fit the data. Nevertheless, the pressure
evolution can be simulated rather well. In [30], some additional details can be
found.
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Figure 5.2: Evolution of mass fraction (above) and pressure (below) at the interface of
the clay and a porous stone (x = 0)
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Figure 5.3: Mass fraction (above) and pressure (below) across the clay sample
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Figure 5.4: Comparison of analytical solution with the solution of the complete nu-
merical model for mass fraction (left) and pressure (right); Keijzer experiment
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z salt solution

clay

0
r

a
b

parameter value in clay value in borehole
ci (mol/l) 0.0085 0.085
n(−) 0.3 1
k(m2) 2.6 · 10−19 1 · 10−13
D(m2/s) 9 · 10−12 1 · 10−9
T (oC) 25 25
Ss(1/Pa) 5.5 · 10−9 5 · 10−4
λ(m5/kg s) 1.9 · 10−12 0
σ(−) 0.089 0

Figure 5.6: Setup and parameters Neuzil model

5.4.2 Neuzil model

Model setup

In [89], Neuzil reported the results of an experiment that conclusively showed the
existence of osmotic pressures in a particular field situation. During this experi-
ment, a number of boreholes were drilled, and filled with saline water. For nine
years, the water elevation and salt concentration in the boreholes were measured.
The results indicated a diffusive decrease in salinity and a rise in water eleva-
tion in the boreholes until a balance was reached, which signalled the end of his
experiments.

The experiments of Neuzil have recently been modelled numerically [31]. It is
shown that the balance of hydraulic pressure and osmotic pressure is followed by a
decline of pressure, as in the experiment of Keijzer. In the current work, a number
of simplifications are made to illustrate the analytical method used. This section
illustrates the limitations of the simplifying assumptions used.

In a saturated, mainly smectite-illite clay shale, four boreholes were drilled and
slotted casings with radii of 3 cm were placed in the boreholes. Two of the casings
were filled with water with ten times the solute concentration compared to the
shale water and the other two were filled with shale water and deionized water
for reference purposes. In the model (see Figure 5.6), the experimental setup is
assumed to consist of two concentric cylinders, the inner one with a radius a of 3
cm.

Because the experiment was performed using a number of boreholes, 15 meter
apart, the radius of the outer annulus was taken to be 15 m. The inner cylinder is
filled with saline water with an initial concentration ci; the outer annulus consists
of clay soil. We assume radial symmetry and no significant flow in the vertical
direction, so one-dimensional radial coordinates are adopted.
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Equations

The same balance equations (5.13)-(5.14) as before hold, but now in radial coordi-
nates. Following the same procedure as in the previous model, we substitute the
momentum balance equations and equations of state in the mass balances, and
apply the approximations β(pi − p0), Ss(pi − p0) ¿ 1, λMs(ci − c0) ¿ D. This
yields:

nβ
∂p

∂t
=

k

µ

1

r

∂

∂r

(

r
∂p

∂r

)

− λMs

r

∂

∂r

(

r
∂c

∂r

)

, (5.39)

n
∂c

∂t
=

D

r

∂

∂r

(

r
∂c

∂r

)

. (5.40)

Initially, the borehole is filled with saline water with a concentration ci; the ambient
concentration in the aquifer is denoted by c∞, so the initial conditions are

c(x, 0) =

{

ci for r ∈ [0, a)

c∞ for r ∈ [a,∞)
(5.41)

p(x, 0) = 0 for r ∈ [0,∞) (5.42)

The boundary conditions at the radius b of the outer cylinder are

c(b, t) = c∞, p(b, t) = 0. (5.43)

The equation for liquid density in the borehole has to be adapted according to

ρf = ρ0
zi
zh

(

1 +
p

ρ0zhg

)

(5.44)

with g the acceleration of gravity, zi the water level in the standpipe and zh the
height of the cylinder. For zero pressure, this expression simulates the situation
of a liquid concentrated in the region z < zh with an apparent density ρ∗0 = ρ0

zi
zh
.

The extra storage capacity is expressed by a larger storage parameter in the inner
cylinder.

As in the previous model, we introduce a new variable ψ, such that

ψi(r, t) =
ki
µ
pi(r, t)−

λiMs

1− εi
ci(r, t). (5.45)
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Using this definition we can recast (5.39) and (5.40):

∂ψi
∂t

=
di
r

∂

∂r

(

r
∂ψ

∂r

)

, (5.46)

where di = ki/µn0iβi. The subscript i = 1 refers to the inner cylinder, and i = 2
to the outer region.

The initial condition for ψ is

r ∈ [0, a) : ψ(r, 0) = 0, r ∈ [a,∞) : ψ(r, 0) = − λMs

1− εc∞, (5.47)

and we can derive the following interface conditions at r = a:

ψ1(a, t) =
k1
k2

(ψ2(a, t) +
λMs

1− εc2(a, t)), (5.48)

∂ψ1(a, t)

∂r
=

∂ψ2(a, t)

∂r
+
ελMs

1− ε
∂c2(a, t)

∂r
. (5.49)

Also,

ψ(b, t) = − λMs

1− εc∞. (5.50)

Solution

The solutions of the diffusion equations (5.40) and (5.46) for the composite cylin-
drical region can be derived using Laplace transformations [13] and are displayed
in Figure 5.7. The same type of pressure and mass fraction evolution is found com-
pared to the first experiment; however, the pressure drop after flow equilibrium is
steeper due to a larger diffusion coefficient. is a dummy variable and

Figure 5.7 also shows a comparison of the results obtained with the analytical
and the numerical model. Numerical and analytical results differ considerably.
This clearly shows the limitations of the simplifying assumptions: the storage
parameters β(pi−p0), Ss(pi−p0) are of order one, therefore the pressure and mass
fraction development can not be described by the simple model.

Solution for infinite outer cylinder radius

As said before, the experiment is also modelled for the situation that the cylindrical
domain is infinite. This yields the following exact solutions for the concentration:
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Figure 5.7: Evolution of pressure and mass fraction at r = a; comparison of analytical
and numerical results

c1 =
4(ci − c∞)D1D

2
2

π2a

∫ ∞

0

e−D1u2t∆1(u, r)du, (5.51)

c2 =
2(ci − c∞)D1

√
D2

π

∫ ∞

0

e−D1u2t∆2(u, r)du, (5.52)

where

∆1 =
J0(ur)J1(ua)

u2(f 2(u) + g2(u))
, (5.53)

∆2 =
J1(ua)(J0(νur)f(u)− Y0(νur)g(u))

u(f 2(u) + g2(u))
, (5.54)

where ν =
√

D1/D2, u is a dummy variable and

f = D1
√

D2J1(au)J0(νau)−D2
√

D1J0(au)J1(νau), (5.55)

g = D1
√

D2J1(au)Y0(νau)−D2
√

D1J0(au)Y1(νau), (5.56)

where J0, J1, Y0 and Y1 are Bessel functions. The solutions for pressure are similar.
Figure 5.8 shows the comparison between the numerical and analytical case for

the infinite domain case. It shows a similar discrepancy due to the excess storage
capacity of the inner cylinder.

Figure 5.9 shows the comparison between the pressure for the finite and infinite
b setups. The concentration profiles are identical, whereas the Figure shows that
pressure varies considerably.
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Figure 5.8: Comparison of pressure and mass fraction at r = a; infinite domain case

5.4.3 The Boussinesq limit

In this paper, we did not neglect the compressibility of the fluid. To show that
this is justified for a rigid clay, we redefine the fluid density and introduce the
parameter δ:

u =
ρf − ρ0
ρmax − ρ0

=
ρf/ρ0 − 1

δ
, δ =

ρmax − ρ0
ρ0

(5.57)

Here, u is the scaled fluid density, and ρmax and ρ0 denote the maximum and
minimum values of the fluid density, respectively. The parameter δ specifies the
relative variation of the liquid density.

Substitution of (5.57) yields for the fluid mass balance (5.13):

δ(n
∂u

∂t
+∇ · (uq)) +∇ · q = 0. (5.58)

The limit δ → 0, which is known as the Boussinesq limit for incompressible flu-
ids, yields ∇ · q = 0. If we consider a simple one-dimensional cartesian domain,
imposing the Boussinesq approximation yields:

∂q

∂x
= −k

µ

∂2p

∂x2
+ λMs

∂2c

∂x2
= 0 (5.59)

→ c− kp

µλMs

= Ax+B, (5.60)

where A,B are integration constants. Here, we neglect the dependence of poros-
ity on pressure. Boundary conditions from the Keijzer experiment yield A = 0,
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Figure 5.9: Pressure at r = a; comparison for finite and infinite b

implying that pressure is linearly related to salt concentration. However, we have
seen that the experimental results and the outcome of the numerical modelling
show that the pressure increases in time, and eventually will decrease, whereas
the concentration is a monotonically decreasing function in time. In Figure 5.10,
we observe the discrepancy between the results for pressure evolution with the
compressibility turned ‘on’ and ‘off’. Therefore, the Boussinesq limit necessarily
does not hold here, also, it clearly shows that the excess water due to osmosis, is
stored in the porous medium.

5.5 Conclusions

To illustrate the influence of osmosis on groundwater flow and transport of dis-
solved particles in clay soils, a model was developed that describes these processes
in various situations. This paper shows that the derived model may be simpli-
fied as to provide analytical solutions for one-dimensional problems of chemical
osmosis in clay membranes. Although there are limitations to the applicability of
this approximation, it can be applied for a range of experiments, especially when
conditions are comparable with those in the Keijzer experiment. This study also
illustrates the importance of the compressibility coefficients in chemically induced
groundwater flow situations. Low values of these coefficients imply that the prob-
lem can be reduced to a set of diffusion-type equations. However, fully neglecting
the compressibilities, i.e. applying the Boussinesq limit, may lead to non-physical
situations.
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The problem of modelling groundwater flow in clay soils becomes increasingly
interesting when phenomena such as electro-osmosis and streaming potential are
included. Or, as in [76], reactive transport and ion exchange. The mechanisms of
swelling and consolidation caused by chemical and electro-osmosis deserve thor-
ough treatment as well. This study will therefore in due course be expanded to
include some, or even all of these processes.
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Chapter 6

Membrane potential

6.1 Introduction
The membrane potential is the electrical potential difference that compensates
the separation of charge due to different velocities of cations and anions in a free
electrolyte solution or in a porous medium (partly) saturated with an electrolyte
solution. In Chapter 2 it was discussed briefly. In this Chapter, we consider
this process in more detail. Different terminologies for this effect are en vogue.
For example, in [9], Bolt states that a potential difference caused by the restrictive
behaviour of the membrane on the ionic mobilities is called the membrane potential
whereas the sum effect of liquid and membrane on the ions is called the diffusion
potential. In [52] however, the membrane potential is the sum of the so-called
concentration potential (the potential difference in a porous medium between two
solutions) and the Donnan potential (between the solution and the membrane).

We follow the approach of Revil [98], where membrane potential is the sum
effect, and the part caused by the membrane is called the exclusion potential.
Schematically, the ‘Bolt’ and ‘Revil’ definitions are given by:

Bolt [9]: Vmembrane + Vliquid = Vdiffusion,

Revil [98] : Vexclusion + Vliquid = Vmembrane.

Although the ‘Bolt’ [9] approach may appear to be somewhat more logical, in most
papers, the term membrane potential specifies the sum effect.

We apply the combined set of equations for chemico-electro-osmosis to assess
the influence of membrane potential on chemical osmotic flow. A number of ex-
periments were performed quite similarly to those reported in Chapter 5. Details
on these experiments can be found in [51]. In a laboratory, a clay sample was
subjected to a salt concentration gradient and pressure and concentration were
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112 MEMBRANE POTENTIAL 6.2

simultaneously measured. However, the clay was equipped with electrodes to
measure the electrical potential as well, and an experimental method was found
to short-circuit the clay, in order to turn on and off the electrical effects.

In this chapter, first an expression for membrane potential is derived and it is
shown how this influences the equations for chemical osmosis and diffusion. Then,
an exposé is given of the experiments performed and it is shown how measured
potentials compare to theoretical potentials. The measured membrane potential is
then shown to be in accordance with the value obtained by applying the theory of
Revil [98]. Then, it is shown how experiments and equations alike show the electro-
osmotic counterflow caused by membrane potential, and how short-circuiting the
setup removes the electrical effects.

6.2 Derivation of an expression for membrane po-
tential

In Chapter 3 we briefly discussed the membrane potential with respect to the
equations for electro-chemical osmosis. In this chapter, we derive a somewhat
more thorough expression for the membrane potential in this chapter. In general,
we start with a microscopic description the processes in a free solution, and then
apply certain assumptions to present the description of the processes in a porous
medium/pore water system. Throughout, we may use the term membrane po-
tential where it should actually read membrane potential gradient or membrane
potential difference. This because of the fact that in literature it is quite common
to omit these terms.

We start with the electrical current density I, which is expressed as

I =
∑

i=+,−

jdi ziF, (6.1)

where jdi are the ionic fluxes in a free solution, zi are the ionic valences and F is
Faraday’s constant. For diffusion of separate ions, assuming an ideal solution, we
write (see [98], [123])

jdi = −uici
F
∇µi, (6.2)

µi = µ0i +RT ln ci + ziFV. (6.3)
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6.2 DERIVATION OF AN EXPRESSION FOR MEMBRANE POTENTIAL 113

where ui is ionic mobility and µ0i is a reference chemical potential such that ∇µ0i =
0. Substituting (6.3) in (6.2) yields

jdi = −
uiRT

F
∇ci − uicizi∇V. (6.4)

For the electrical current density in a 1:1 electrolyte this implies

I = −(u+ − u−)RT∇cf − (u+ + u−)cfF∇V. (6.5)

When electro-neutrality is enforced, the concentrations of anions and cations equal
the salt concentration cf : cf = c+ = c−, as are the ionic fluxes: jds = j

d
+ = jd−. We

define u = u+ − u− as the effective solute mobility and σf = (u+ + u−)Fcf as the
electrical conductivity of the electrolyte, such that (6.5) may be written as:

I = −uRT∇cf − σf∇V. (6.6)

If we assume the mobility and the electrical conductivity to be constant, we obtain
a simple expression to quantify membrane potential:

I = 0→ ∇V = −uRT
σf
∇cf . (6.7)

This expression is often found in literature [123], [76] to describe the membrane
potential. The mobility and the electrical conductivity are simply substituted by
macroscopic counterparts that are assumed to be constant. However, especially for
larger salt concentration gradients, the concentration dependence of the electrical
conductivity becomes increasingly significant, as can be seen in Figure 6.1. In this
figure, we compared the membrane potential for a concentration dependent σf
(exact) and for a constant σf . The value of σf was chosen, in accordance with the
mean of the outside concentrations. We assumed a low concentration of clow = 0.01
M and defined the parameter α to be the ratio of high and low concentrations:
α = chigh/clow.

For solutions, such as NaCl, it is known that a Cl− ion moves faster than a
Na+ ion, or: u− > u+, hence u < 0 and the potential gradient is of the same
sign as the salt concentration gradient. However, when for example in a clay,
the movement of anions is more restricted than the movement of cations, viz. in
the case of anion exclusion, the mobility of cations is higher than the mobility of
anions and the potential gradient and the salt concentration gradient have different
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signs. We may follow the approach of [98] and adopt the expression for electrical
conductivity; then:

∇V = − (u+ − u−)RT
(u+ + u−)Fcf

∇cf = −RT
F

(t+ − t−)∇ ln cf , (6.8)

where ti are Hittorf transport numbers that specify relative mobility of the ionic
constituents:

ti =
ui

∑

i=+,− ui
. (6.9)

For a porous medium it is shown in [98] that these equations are valid if we
substitute for σf , ui, ti macroscopic parameters. In [98] it is shown that, for the
previous expression for the potential this amounts to:

∇V = −RT
F

(T+ − T−)∇ ln cf (6.10)

Ti =
σi
σf
, (6.11)

where σi is the contribution of an ion to the bulk electrical conductivity σe =
σ+ + σ− and Ti are the macroscopic Hittorf numbers. This expression can be
decomposed in a liquid junction potential and a exclusion potential, respectively:
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6.3 MEMBRANE POTENTIAL AND CHEMICAL OSMOSIS 115

∇V = −RT
F

(t+ − t−)∇ ln cf −
2RT

F
(T+ − t+)∇ ln cf . (6.12)

In [98] it is shown qualitatively how in the absence of a porous medium, the
macroscopic parameter Ti reduces to ti.

Alternatively, we may consider the presence of the porous medium to be only
accounted for by the formation factor (as in [5]), i.e.

σe =
σf
F0
. (6.13)

To avoid confusion, the formation factor is denoted by F0:

∇V = −RT
F
F0(2t+ − 1)∇ ln cf . (6.14)

6.3 Membrane potential and chemical osmosis

In Chapter 3 we saw the simple variant of the Darcy flux, corrected for streaming
and membrane potential. Here we repeat this relationship, but consider a depen-
dence on a salt concentration gradient instead of the mass fractions of the separate
ions.

q = −Ke∇p+ Λe∇cf , (6.15)

where

Λe = λ+
(u+ − u−)RTke

σe
. (6.16)

On the other hand, if we insert the expression for the membrane potential we just
derived, i.e. equation (6.10), in

q = −k
µ
∇p+ λ∇cf − ke∇V, (6.17)

we obtain
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qnsc = −
[

k

µ
− k2e
σe

]

∇p+
[

λ+ ke
RT

F
(T+ − T−)

1

cf

]

∇cf . (6.18)

The electric conductivity in the streaming potential is not expanded because this
term is quite small and will therefore be neglected later on. The transition from
the expression with electrical effects to the one without is formally done by short-
circuiting. In the experiments, the system is short-circuited to eliminate any elec-
trical potentials. The flux equations therefore come in two flavours: short-circuited
(sc) (or shorted), i.e. without electrical effects, and non-short-circuited (nsc) (or
non-shorted), i.e. with electrical effects. The short-circuited Darcy flux is simply
given by

qsc = −k
µ
∇p+ λ∇cf , (6.19)

i.e. ∇V = 0 in equation (6.17).

6.4 Membrane potential and diffusion

The simple expressions for the ion fluxes discussed in Chapter 3 are expanded as
follows. First, the free solution expression is derived:

jd+ = −
[

D+ −
u+(u+ − u−)cfRT

σe

]

∇cf

= −
[

D+ −
u+(u+ − u−)cfRT
F (u+ + u−)cf

]

∇cf

= −D+
[

1− u+ − u−
(u+ + u−)

]

∇cf

= −2t−D+∇cf (6.20)

Contrary to Chapter 3, we write jds instead of Jds to stress that we first consider
microscopic formulations, and subsequently introduce the upscaled expressons.
Assuming jds = jd+ = jd− = −Df∇cf , where Df is the solute diffusivity in a free
solution, we find

Df = 2t−D+ = 2t+D− (6.21)
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Unfortunately, this equation cannot be ‘simply’ upscaled by substituting for the
macroscopic Hittorf numbers, because we already used the expression for the free
solution electrical conductivity. In our description, we do not really have macro-
scopic values of the diffusion coefficients and the mobilities, but we do have macro-
scopic values of the Hittorf transport numbers and the corresponding electrical
conductivities. It is therefore convenient to write the equations in terms of the
latter parameters.

The following method is applied, where the arrow denotes upscaling to the
porous medium and the bars denote macroscopic quantities. Note that we do not
put bars on the electrical conductivities as they are not defined before separately
for cations and anions.

D+ → D̄+ =
ū+RT

F
=
σ+RT

F 2c+
(6.22)

The cation flux in the porous medium then becomes

Jd+ = −D̄+∇cf − ū+cf∇V

= −
[

D̄+ −
ū+RT (T+ − T−)

F

]

∇cf

= −2T−D̄+∇cf . (6.23)

This last term can be written in terms of the electrolyte diffusivity Df :

2T−D̄+ =
2T−σ+RT

F (Fcf)

=
2T−T+σeRT (u+ + u−)

Fσf

=
T+T−σe
t+t−σf

Df

=
T+
t+

Df

F0
. (6.24)

The last step was obtained by using the definition T−σe = σ− = σf t−/F0.
The macroscopic diffusivity obviously reduces to the electrolyte diffusivity in the
absence of a porous medium, i.e. γ = T+/t+ → 1 as well as geometrical constraints,
i.e. F0 → 1. The salt flux is equal to the cation flux in the non-shorted case:
Jds = J

d
+ = Jd−; hence:
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(Jds)nsc = −
Df

F0
γ∇cf . (6.25)

When we consider the short-circuited situation, we disregard all electrical contri-
butions. The result is the following: the anionic and cationic diffusion coefficients,
concentrations and fluxes are no longer equal. This implies that a successful ex-
perimental shortcut separates the charges in the solution. The liquid-junction
potential, generated by this separation of charges, is immediately compensated by
the potential generated by the virtual shortcut. In the experiments, the Ag|AgCl
electrodes only measure the amount of anions in the solution, so instead of the
salt flux we have to use the expression for the anion flux to interpret the results
of the experiments. Accordingly, the electrolyte anion flux is given by

(Jd−)sc = −D̄−∇c−. (6.26)

As the electrical conduction of anions is assumed not to be influenced by the charge
of the porous medium, but only by its geometry, we find

σ− = Fū−c− =
Fu−c−
F0

, (6.27)

and therefore

(Jd−)sc = −D̄−∇c− = −D−

F0
∇c−. (6.28)

6.5 Experiments
In [51], a number of experiments is described in which it is investigated how the
membrane potential influences the buildup of osmotic pressure. We show here
the results of experiments on bentonite clay, for an initial concentration difference
of 0.01 − 0.1M NaCl and 0.01 − 0.05M NaCl for natural, hetero-ionic clay and a
∆c = 0.01 − 0.1M NaCl-experiment for homo-ionic clay. In Table 6.1 it is shown
how the different experiments are classified.

6.5.1 Experimental setup

The experiment was quite similar compared to the experiment reported by Keijzer
[63]. A clay sample was subjected to a salt concentration gradient, but here, the
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sample was prepared with electrodes to measure electrical potentials in the clay.
To contain the clay, a rigid-wall permeameter was used, consisting of plastics for
electrical insulation, with an inner diameter of 50 mm. Within this mould, the clay
sample that is situated between two porous stones and nylon filters has the same
dimensions as in the flexible-wall permeameter previously used. In addition, it is
advantageous that the clay sample can be saturated in-situ before the experiment
is started such that distortion of the clay membrane is minimal. Compaction of
the clay during the experiment is ensured by putting a mechanical load on the
piston of the sample mould. Via the porous stones, the clay is in contact with
two fluid reservoirs that are equipped with double junction Ag|AgCl reference
electrodes and Cl-sensitive electrodes to measure the electrical potential and the
Cl-concentration, and with a calibrated standpipe to quantify the water flow. To
prevent concentration polarization and to homogenize the solutions, the reservoirs
are continuously circulated with a peristaltic pump. The setup is shown in Figure
6.2.

Figure 6.2: Photograph of the experimental setup

To gain insight in the effect of the potential build-up on the water flow across
the clay sample, it should be possible to eliminate this potential by short-circuiting
the electrodes. However, physical shortening is not viable because conducting cur-
rent through the reference electrodes produces unpredictable additional potentials.
Therefore, an instrument was designed, here referred to as ’virtual shortcut’, which
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designation homo-ionic concentration difference (NaCl) type of clay shorted?

be1nsc no 0.1-0.01 M bentonite no
be1sc no 0.1-0.01 M bentonite yes
be05nsc no 0.05-0.01 M bentonite no
be05sc no 0.05-0.01 M bentonite yes
2be1nsc yes 0.1-0.01 M bentonite no
2be1sc yes 0.1-0.01 M bentonite yes

Table 6.1: Designation of experiments

brings the potential across the sample to zero with a negative feedback current.
The virtual shortcut measures the potential with the Ag|AgCl electrodes and ap-
plies a corresponding current by a feedback amplifier on noble metal electrodes,
which are also inserted in the two fluid reservoirs.

6.5.2 Experimental results

In all experiments, the following occurred: the applied concentration difference
induced a membrane potential that built up more or less instantaneously, and
then declined, mainly because of diffusion of salt into the clay. The membrane
potential, as calculated in the next section, refers to the initial potential differ-
ence. Also, because of the salt concentration difference, chemical osmosis induced
a water flow through the clay from low to high salt concentration, inducing a
relatively slow (due to storativity) buildup of pressure. As before, the pressure
declines after reaching a maximum, also because of diffusion of solute through the
clay. Two experiments were performed for each case, with different but similar
clays. We assume these clays to be identical. Every experiment was performed
with and without shortcut. Without shortcut, which is actually the default sit-
uation for clays, an electrical potential is present throughout the clay: a sum of
membrane and streaming potential. This potential induces electro-osmotic flow,
as well as electrophoresis. Or, in particular: a concentration gradient shifts the
excess of cations, thereby creating a potential that induces electro-osmotic flow
which counteracts flow of water due to chemical osmosis.

6.6 Measuring potentials

Membrane potentials cannot be measured directly [52]. Usually, the total Electro-
motive Force (EMF) of a system is measured, as displayed in Figure 6.3. The EMF
is evaluated as the sum of the electrode potentials, the Donnan potentials and the
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Figure 6.3: Overview of electrical potentials

membrane potential. The electrode potential is the electric potential difference
between the electrode and the solution. The electrode potential Eel is defined as

Eel = E0 +
RT

F
ln ai, (6.29)

where E0 is the standard electrode potential and ai is the activity of ion i in the
solution, to which the electrode is reversible. When calculating the EMF of the
system, the two E0’s cancel out. The potential between two phases in contact
is called the phase-boundary potential. When a solution is brought in contact
with a membrane this is called the Donnan potential. In a negatively charged
membrane, the concentration of cations is larger than the concentration of anions,
and the concentration of cations is larger in the membrane than in the solution.
The cations want to diffuse out of the membrane, but this is prevented by the
Donnan potential to attain electro-neutrality. The Donnan potential is defined by

EDon = −
RT

F
ln
āi
ai
, (6.30)

where āi is the activity of ion i in the membrane. As the membrane potential is
related to the activities of the ions in the membranes, the formula for the Donnan
potential ‘translates’ the values for the activities in the membranes to the values
of the activities in the solutions. As in [52], we get, for a 1:1 electrolyte and a
cation-exchanger

Emem = Ediff + E1Don − E2Don (6.31)

= −RT
F

[

ln
ā2+
ā1+

+ 2

∫

t̄−d ln āf + ln
ā1+
a1+
− ln

ā2+
a2+

]

= −RT
F

[

ln
a2
a1

+ 2

∫

t̄−d ln af

]

=
RT

F

[

ln
a2
a1
− 2

∫

t̄+d ln af

]

.
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Sub- and- superscripts 1, 2 refer to different sides of the sample and af is salt
activity in the free solution. In the last lines the definition t̄+ = 1 − t̄− was used
and it was assumed that the activity of the salt is equal to the activity of the ions.
Introducing the notation of [98] for the macroscopic transference number, i.e. T+
instead of t̄+, where L is the membrane thickness:

Emem = −RT
F

∫

(2T+ − 1)d ln af . (6.32)

When we assume T+(L) = T2+ and T+(0) = T1+ to be constant, we find

Emem = −RT
F
{(2T2+ − 1) ln a2 − (2T1+ − 1) ln a1} (6.33)

= −RT
F

ln
a1
a2

+
2RT

F
(T1+ ln a1 − T2+ ln a2) . (6.34)

The total EMF now consists of the electrode potential and the membrane poten-
tials; as in [98], we write:

Etot = Eel1 + Emem + Eel2 = Emem −
RT

F
ln
a2
a1

(6.35)

=
2RT

F
(T1+ ln a1 − T2+ ln a2) . (6.36)

Now, in [98], an expression is derived for T+:

1

T+
= 1 +

1− t+
F0ξ +

1
2
(t+ − ξ)

(

1− ξ
t+

+
√

[

1− ξ
t+

]2
+ 4F0ξ

t+

) . (6.37)

The microscopic Hittorf number for Na+ is t+ = 0.38. The parameter ξ is defined
as the ratio of surface conductivity and fluid conductivity:

ξ =
σχ
σf
. (6.38)

As seen in Chapter 2, the surface conductivity in [98] is defined as

σχ =
2

3

n

1− nβsQv, (6.39)
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where Qv is the excess of charge, n[−] is porosity and βs is a surface ionic con-
ductivity. This definition however, is based on the assumption of low porosity,
whereas we deal with high porosity. The approximation for high porosity [103] is

σχ =
3βsQv

2(3− n) . (6.40)

The excess of charge is calculated using

Qv = ρs
1− n
n

F · C, (6.41)

where ρs is the rock density and C is the cation exchange capacity, expressed in
terms of molc/kg ∼ meq/g.

6.7 Membrane potential value

As an example, we review the results of experiment be1sc (see Table 6.1) in detail.
Here, the overburden pressure applied was 1 bar and the applied concentration
difference was roughly 0.1 − 0.01 M. In the experiment the initial concentrations
were measured: c1 = 12.2 mol·m−3, c2 = 105 mol·m−3 which implies a1 = 11.6
mol·m−3, a2 = 94.1 mol·m−3 by Debye-Hückel theory. The total potential is now

Etot =
2RT

F
(T1+ ln 11.6− T2+ ln 94.1) . (6.42)

The corresponding theoretical liquid-junction potential Elp in the absence of a
membrane would be:

Elp =
2RTt+
F

(ln 11.6− ln 94.1) = −41mV. (6.43)

The excess of charge, calculated from (6.41), is Qv = 3.4 · 107 C/m3. The
mobility of the counterions in the diffuse double layer is, according to [98], equal
to βs = 0.51 · 10−8 m2/Vs. This literature value is based on experiments on
montmorillonite. With these values of the parameters, the surface conductivity
becomes σχ = 0.118 S/m.

Another parameter considered is the formation factor F0. It is customary to
relate this parameter to the porosity via Archie’s law [1]:
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parameter exp 1: 0.1-0.01 M exp 2: 0.05-0.01 M

low concentration [mol/m3] 12.2 13.77
high concentration [mol/m3] 105 55
low activity [mol/m3] 11.6 13.1
high activity [mol/m3] 94.1 50.4
cation exchange capacity C [cmolc/kg] 53 53
porosity n [-] 0.80 0.80
temperature T [K] 298 298
rock density ρs [kg/m

3] 2650 [63] 2650
excess of charge Qv [C·m3] 3.4 · 107 3.4 · 107
surface conductivity [S/m] 0.118 0.118
membrane potential: measured [mV] -32 -23
membrane potential: calculated [mV] -34 -23

Table 6.2: Some a priori, measured and calculated parameters

F0 = n−m, (6.44)

where m is the so-called cementation exponent, usually assumed to be 2. If we
assume constant porosity and formation factor, we get F0 = 1.56.

Using all these values and definitions, the macroscopic Hittorf numbers depend
only on the concentrations in the reservoirs. Using formula (6.37), we find: T1+ =
0.54, T2+ = 0.44, and consequently:

Etot = −34mV (6.45)

As the experimental result is Etot = −32 ± 3 mV, we have quite a satisfactory
agreement between the experimental results and our theoretical value.

Now, the actual membrane potential is

Emem = Etot −
RT

F
ln
a1
a2

= −32mV + 55mV = +23mV (6.46)

Hence, the actual membrane potential is positive, i.e. of the same sign as the
concentration gradient. This is in accordance with flow data of non-shortcircuited
tests and short-circuited tests, that strongly indicate a counterflow of water hin-
dering chemical osmotic transport.
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Figure 6.4: Membrane potential values for varying α and F0

This result is, however, not in accordance with the interpretation as given in [98].
Here, a theoretical range is given for the membrane potential, which amounts for
the current experiment to Etot ∈ [−110,−41], where Etot = −41mV corresponds
to the case of ‘pure’ liquid junction potential and Etot = −110mV to a ‘strong’
influence of the membrane on the potential. However, in Figure 6.4, it is shown
how the membrane potential, using the values of the activities from the experiment
considered in this study, depends on the formation factor and on the parameter
α = ξ · af .

This figure shows that, in the range of α and F0 that we consider, the membrane
potential stays clearly above the −41 mV value. Only for rather large values of
F0 and α, the membrane potential is smaller than −41 mV, as predicted in [98].
Apparently, the interpretation of membrane potential in this respect has to be
adapted. Most likely, the large difference in transference numbers for the fresh
and salt sides causes this ‘anomaly’ in the membrane potential. Or, the influence
of cation exchange may be different than as proposed in [98].
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6.8 Modelling procedure

6.8.1 Equations

The simultaneous evolution of pressure, membrane potential and concentration
was modelled using equations from Chapter 3. The model equations, assuming
incompressible fluid, no chemical reactions, no temperature effects, and low Peclet
number, are (see [3]:

fluid mass balance

∂n

∂t
+∇ · q = 0. (6.47)

salt mass balance

∂ncf
∂t

+∇ · (cfq) +∇ · Jds = 0. (6.48)

flux equations

qnsc = −
[

k

µ
− k2e
σe

]

∇p+
[

λ+ keRT (T+ − T−)
1

cf

]

∇cf (6.49)

qsc = −k
µ
∇p+ λ∇cf (6.50)

(Jds)nsc = −Df

F0
γ∇cf (6.51)

(Jd−)sc = −D−

F0
∇c− (6.52)

constitutive equation

n = 1− (1− n0)e−Ssp, (6.53)

where n0 is a reference porosity, and Ss[1/Pa] is the compressibility of the porous
medium.

6.8.2 Model domain

In Figure 6.5 the general modelling domain for all membrane potential experiments
is presented. The parameters not specified are given in the tables corresponding
to the respective experiments.
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parameter value in clay value in porous stone
n(−) 0.5 n
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D(m2/s) D 1.5 · 10−9
α(1/Pa) 1 · 10−9 4.6 · 10−10
σ(-) σ 0
length (mm) a = 2.9 b− a = 7.2

Figure 6.5: Modelling domain membrane potential experiment and relevant parameters

6.8.3 Initial and boundary conditions

Initially, the pressure and electrical potential are zero in the whole domain, and
the concentration is c0 (high value) in the porous stone at the left-handside and
ca (low value) in the clay and the porous stone at the right-handside.

The following boundary conditions apply:

∂p

∂x
= 0,

∂c

∂x
= 0, at x = −L (6.54)

p = 0,
∂c

∂x
= 0, at x = b (6.55)

We imposed p ≡ 0 in the left-handside reservoir, because the pressure in this reser-
voir is atmospheric. The solutions in the reservoir are well stirred, such that the
measured concentrations should correspond to the concentrations at the interface
between the reservoirs and the porous stones.

6.9 Modelling results for bentonite: high ∆c

6.9.1 Pressure development

In this section we present the experimental and modelling results of the experiment
performed on the clay sample subjected to a concentration gradient of about 90
mol/m3. For numerical modelling, we used the scripted finite element builder and
numerical solver FlexPDE [26]. In Figure 6.6 the pressure buildup in the salt
water reservoir is depicted. Obviously, in the short-circuited case, water flow is
not hindered by electro-osmosis, and pressure reaches a higher point than in the
non-shorted case. The graph breaks down at some point, for the shorted as well
as the non-shorted case. This is probably due to temporary cracks in the clay,
through which water can preferentially flow in the direction of the fresh water
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reservoir. It is interesting to observe that in the non-shorted case, the pressure
development continues after the degeneration in about the same way as before.
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Figure 6.6: Pressure development for the shorted and non-shorted case; comparison of
experimental and numerical results

6.9.2 Membrane potential development

In Figure 6.7 the dissipation of membrane potential is shown. The graph for
the numerical and experimental results compare rather well, especially when the
numerical graph is shifted to correspond with the initial membrane potential value,
as is represented by the middle line.

The dissipation of membrane potential occurs somewhat faster in the experiment
than in the simulation. This can be explained by a streaming potential devel-
opment, that becomes significant for higher pressures. However, the streaming
potential can be approximated by:

Vsp ≈ −
ke
σe
p ≈ 7µV, (6.56)

which is obviously much too small to contribute to the total potential. Other
effects should therefore contribute to the dissipation of the potential.
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6.9.3 Concentration development

In Figure 6.8 the development of the concentration in the salt water reservoir is
shown for the non-shorted setup. Here, we corrected for the volume increase due to
the inflow of water. Obviously, after t = 180000 s, something has happened during
the experiment that ‘degenerates’ the diffusion. Using the shorted diffusion coeffi-
cient, we find for the shorted case the concentration evolution as depicted in Figure
6.9. In both cases, the agreement between numerical and experimental results is
excellent, aside from the degeneration and the scattering of the concentration data
in the shorted experiment.

6.9.4 Coefficients

During the experiments, the permeability was not measured directly, but was
assumed to be equal to the permeability found in conductivity tests on similar
samples of the same clay, under equal overburden pressures. Therefore, its value is
assumed to be k = 2.3·10−18 m2. From the results of the short-circuited experiment
we can derive the value of the reflection coefficient. This can be calculated using
van’t Hoff’s law, resulting in σ = 0.024 ± 0.005. Van ’t Hoff’s law applies at the
equilibrium flow conditions, and henceforth the concentration difference used in
the expression for van ’t Hoff’s law was evaluated at the time of flow equilibrium.
Obviously, it is smaller than the initial salt concentration difference. It is difficult
to assess precisely the moment of flow equilibrium, resulting in the relatively large
error.

The value of the electro-osmotic permeability is inferred from the difference
between the water flux in the shorted and the non-shorted experiment. The differ-
ence corresponds to the counterflow of water induced by electro-osmosis, and equals
the electro-osmotic permeability multiplied by the membrane potential gradient.
This calculation, using the results of this experiment, yields a value of ke = 1.2·10−9
m2/Vs, which is on the low side of the spectrum of values ke ∈ (0.5, 5)·10−9 m2/Vs,
as reported by Bolt [9] for instance. As this value is directly correlated to the value
of the reflection coefficient, which is apparently quite small as well, this is not a
surprising result. Throughout this chapter, we assume the following:

k

µ
À k2e

σe
(6.57)

To check whether this is justified, we substitute the values of the parameters for
this experiment: σe = 0.12 S/m, k/µ = 2.3 ·10−15 m2/s and ke = 1.2 ·10−9 m2/Vs.
This leads to:
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Figure 6.7: Membrane potential development for the non-shorted case; comparison of
experimental and numerical results
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Figure 6.8: Concentration development for the non-shorted case; comparison of exper-
imental and numerical results
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Figure 6.9: Concentration development for the shorted case; comparison of experimen-
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k

µ
≈ 190 · k

2
e

σe
, (6.58)

which seems an appropriate justification for the approximation. The diffusion
coefficient for the non-shorted case is deduced from flow measurements and equals
Dnsc = 2.7 · 10−10 m2/s. The diffusion coefficient, from (6.25), has to be corrected
for cation exchange, which may be represented by a retardation term R [76], as
seen before in Chapter 2:

D =
Dfγ

RF0
. (6.59)

This retardation parameter is inferred from the experimentally derived diffusion
coefficient. It is subsequently used for the shorted case. Hence, the diffusion
coefficient for the shorted experiment is about equal, viz.:

D =
D−

RF0
= 2.6 · 10−10m2/s. (6.60)

Finally, the storativity was chosen to fit pressure evolution. This value was
subsequently used in all simulations, as it reflects a property of the clay which is
not likely to be dependent on the salt concentration or cation occupation.
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Figure 6.10: Membrane potential development for the non-shorted case of experiment
be05(n)sc; comparison of experimental and numerical results

6.10 Modelling results for bentonite: low ∆c

A similar experiment was performed with a smaller concentration gradient, to
assess the consistency of the results. Most coefficients were equal to the ones in
the previous experiment, except for the diffusion coefficient, which, based on solute
flux data, was seen to be slightly larger, i.e. D = 4 · 10−10 m2/s. The reflection
coefficient, which is expected to be larger for lower concentrations, equals σ =
0.03± 0.005 in this setup. Actually, if we would calculate the reflection coefficient
based on the values of the diffuse double layer thickness inferred from the σ in the
high ∆c-experiment, we would get a higher value, if we assume the concentration
difference to be constant in the clay and equal to the mean of the concentrations
in the reservoirs. However, as salt diffuses into the clay, the reflection coefficient
becomes quite position dependent, and prediction of σ becomes very difficult.

The membrane potential was calculated using the same theory as in Section 6.7.
The concentrations, as measured in the non-shorted experiment, are 0.055M and
0.014M for the salt and the fresh reservoir, which translates to activities of 0.051M
and 0.013M respectively, yielding

Etot =
2RT

F
(T1+ ln 13.1− T2+ ln 51.4) . (6.61)
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Figure 6.11: Pressure development for the non-shorted and the shorted case of exper-
iment be05(n)sc; comparison of experimental and numerical results

The corresponding Hittorf transport numbers are T1+ = 0.52 and T2+ = 0.45, and
therefore the calculated, total membrane potential turns out to be −23 mV. This
is in excellent agreement with the experimental result Etot = −23 ± 3 mV. The
development of the membrane potential is displayed in Figure 6.10. The numerical
result was shifted to a lower initial membrane potential value to obtain a better
comparison of the evolution. It is remarkable to observe that, in the experiment,
the development is apparently more linear than in the simulations.

The pressure development was simulated and the results are displayed in Figure
6.11. Unfortunately, the shorted experiment suffered a fate comparable to what
had happened in the previous experiment, but now in the initial stage: the pressure
drops unexpectedly, or evolution of pressure is somehow slowed down. However,
from the results of the simulations, we may observe what most likely would have
happened without this mishap.

Finally, in Figure 6.12 the evolution of concentration in the fresh water reservoir
is shown.

6.11 Results with homo-ionic clay
In a second type of experiment, the results of be1(n)sc (see Table 6.1) where
shown to be reproducible. The experiment was performed with a homo-ionic clay
to assess the influence of cation occupation on the clay platelets. In Table 6.3,
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Figure 6.12: Concentration development in the fresh water reservoir for the shorted
and non-shorted cases of the experiment be05(n)sc; comparison of experimental and
numerical results

the differences in coefficients between the two experiments are shown. The only
differences are the initial concentrations, the cation occupation and hence the
surface conductivity.

From the table we see that the homo-ionicity of the clay does not influence the
values of membrane potential and reflection coefficient much: the initial concen-
tration in the salt water reservoir is somewhat higher in the homo-ionic experiment
compared to the hetero-ionic experiment. This should imply a somewhat smaller
reflection coefficient, such as is observed in Table 6.3.

The initial membrane potential difference is nearly equal, and differences could
be the result of different cation occupation. However, all values lie within the
margin of error. From Figure 6.13 we observe that the evolution of pressure is
rather similar compared to the experiment with the hetero-ionic clay, although
the non-shorted pressure ‘degenerates’ in the homo-ionic experiment.

An interesting deviation from the first experiment can be seen in Figure 6.14:
the (unknown) effect responsible for the divergence of numerical and experimental
results in Figure 6.7, is seen to be even stronger here. Again, we could attribute
this to streaming potential, although this effect is probably too small.
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parameter exp. 2be1(n)sc exp. be1(n)sc

low concentration [mol/m3] 12.9 12.2
high concentration [mol/m3] 90.4 105
low activity [mol/m3] 12.6 11.6
high activity [mol/m3] 81.4 94.1
cation exchange capacity C meq/g 53 53
porosity n [-] 0.80 0.80
rock density ρs [kg/m

3] 2650 2650
excess of charge Qv [C·m3] 5.1 · 107 3.4 · 107
surface conductivity σχ [S/m] 0.178 0.118
membrane potential: measured [mV] -33 -32
membrane potential: calculated [mV] -32 -34
reflection coefficient [-] 0.025 0.024

Table 6.3: Comparison between parameters of the experiment with hetero-ionic clay
and the one with homo-ionic clay

6.12 Conclusions
We have adapted the model of Revil [98] and validated it with results from labo-
ratory experiments on bentonite clay. The model was shown to be quite suitable
to predict membrane potential values. Also, it is shown how the model equations
are perfectly able to simulate the transient development of pressure, concentration
and membrane potential for shorted as well as for non-shorted conditions. As
expected, when turning off the electrical terms in the equations, the numerical
results agree with the experimental findings for the shorted experiment.

The model was shown to be applicable for homo-as well as hetero-ionic clays.
However, there doesn’t seem to be much difference between the results of the
experiments on the two types of clay. As the cation occupation is the significant
difference between the homo-ionic and hetero-ionic clay, this is apparently not of
great influence on processes such as membrane potential development and chemical
osmosis.

Some questions, however, remain unanswered: how can we come to an interpre-
tation of the result for membrane potential that can agree with the interpretation
of Revil? How can we explain the divergence of the development of membrane po-
tential difference for numerical and experimental results, other than by streaming
potential? And finally, does the cation occupation on the clay perhaps influence
this development, and if so, in what way?
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Chapter 7

Modelling osmosis with
METROPOL

7.1 Introduction

Disposal of nuclear and other highly toxic wastes has become an increasingly im-
portant subject in hydrological modelling. Possible ways of storage are in subsur-
face salt formations, or in regions that are screened by clay liners. It is known
that flow of groundwater is the main mechanism for transport of radionuclides
from these regions into the environment [100]. The transport of radionuclides is
subject to a number of processes. For example, in the vicinity of salt domes, high
salt concentration gradients may occur, in general large heterogeneities and liquid
density gradients may be present, and in clay layers, osmotic effects may play a
significant role. High salt concentrations also alter fluid viscosity, diffusion, chem-
ical osmosis. All these coupled processes give rise to three-dimensional flow fields,
that have to be determined to accurately describe the flow of groundwater and
transport of dissolved species. To accomplish this, in the eighties, a finite element
code was developed by RIVM (the Rijksinstituut voor Volksgezondheid en Mi-
lieu), containing most transport processes mentioned above. Later on, this model
code, called METROPOL, which is an acronym for MEthod for TRansport Of
POLlutants, was extended with various features, most notably with the factors
accounting for the influence of temperature gradients on water flow and solute
transport.

In this study, the code is extended with chemical and electro-osmosis. The orig-
inal METROPOL code contained terms accounting for salt-gradient-driven water
transport and hydraulically-induced solute transport. However, the osmosis term
was represented by a bulk parameter and electrical effects were not included. In
this chapter, a brief introduction to the code will be given. In Section 7.2, some
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essential parts of the METROPOL code are presented. In Section 7.3 some numer-
ical details of the code are explained. Section 7.4 includes the full set of equations
applicable for osmotically induced groundwater flow. The next section deals with
a simple one-dimensional application and a comparison with a laboratory exper-
iment. Finally, in the last section the results of a three-dimensional numerical
experiment are presented.

7.2 The program

7.2.1 Routines

METROPOL consists of a series of different subroutines, for tasks such as mesh
generation, algebraic equation solving and postprocessing. The METROPOLman-
ual [100] lists them all, but here we present the routines that were used, and in
some cases modified, in this study:

• METROMESH a three-dimensional mesh generator

• METROREF a program for automatic mesh refinement

• METROPOL-3 the default program that solves the equations for transient
groundwater flow and transport of dissolved salt

• METROHEAT idem, but effects of temperature variations in the soil are
included

• METROSMO idem, but extended with chemically and electrically coupled
transport

• METROPLOT a program that plots the results of the calculation as con-
tours, velocity vectors and/or particle trajectories in two-dimensional cuts

• METROREAD a program that delivers output files for inspection and that
plots time profile graphs; the formatted output files can be used as input for
professional plotting programs such as Tecplot and Gnuplot

7.2.2 Numerical method: description

The numerical method to solve the differential equations describing groundwater
flow and solute transport which is used in METROPOL is the Finite Element
Method. Compared to Finite Difference Methods, the main advantages are that it
allows for irregular, non-rectangular boundaries, and moreover, that the solutions
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are in general more accurate than those of finite difference methods. This study
follows the approach of [60] in setting up a finite element problem. The first step
in this procedure involves defining an appropriate mesh, i.e. distributing the nodes
and selecting the size and shape of the elements. A number of evident rules [60]
should be obeyed, such as conservation of topology of the domain and application
of symmetry wherever possible. In addition, one should aim for elements that
are as regularly shaped as possible to minimize computation time and numerical
errors.

The second step is the derivation of an integral formulation for the govern-
ing groundwater flow and solute transport equations. Aside from the variational
method, the method of weighted residuals is quite often used and is actually a
more general approach. An approximate solution is substituted into the governing
equations, and the weighted averages of all errors or residuals in each node over
the domain is forced to equal zero. In some more detail, this procedure works as
follows.

Consider a differential equation of the form

L(φ(x, y, z))− F (x, y, z) = 0, (7.1)

where L is a differential operator, φ is the field variable, such as pressure or
concentration, and F is a known function. Define an approximate solution for φ,
denoted by φ̂:

φ̂(x, y, z) =
m
∑

i=1

Ni(x, y, z)φi, (7.2)

where φi are the variables at the nodes and Ni are so-called interpolation functions.
Substitution of (7.2) in (7.1) yields:

L(φ̂)− F = R, (7.3)

where R(x, y, z) is the vector containing the residuals of the solution. The weighted
average of the residuals at the nodes is now forced to equal zero:

∫

Ω

W (x, y, z)R(x, y, z)dΩ = 0, (7.4)

where W is a weighing function, and Ω denotes the computational domain. Dif-
ferent choices are possible for choosing the weighing functions. In METROPOL,
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Galerkin’s method is used for the choice of the weighing function. In this method,
the weighing function is chosen to be the same as the aforementioned interpolation
function.

The next step involves the choice of interpolation functions. A suitable choice
of interpolation functions improves the accuracy of the approximate solution. In
METROPOL, tri-linear basis functions are chosen, i.e. functions that are 1 in
nodal point i, zero in all other points and linear in x, y and z.

Choosing the interpolation function and weighing function yields a set of equa-
tions that can be written in matrix form.

Time derivatives are dealt with using standard algorithms. In METROPOL-3,
mainly the Euler implicit or backward difference method is used. So, if F , C and
K are indicated as the flow vector, capacitance matrix and conductivity matrix
respectively, and h is the hydraulic head vector, the backward difference method
implies

[C]ḣ+ [K]h = F → ([C] + ∆t[K])ht+∆t = [C]ht +∆tFt+∆t. (7.5)

The matrix equations contain spatial integrations, for which in METROPOL-3 the
method of Gauss quadrature is used, according to the following formula:

∫∫∫

f(x)dx =
1

8

8
∑

k=1

Jkfk, (7.6)

where f is the function to be integrated, Jk is the Jacobian of the k−th Gauss
point and fk is the corresponding value of f in the Gauss point. Gauss points are
located at the local x, y, z−coordinates 1

2
± 1
6

√
3 which implies exact numerical

integration for polynomials of degree three or less.
The final step is the solution of the equations. Picard iteration is employed to

solve a set of non-linear equations: a sequence of solutions is constructed, in which
each solution is calculated from the previous solution with a linear set of equations,
until a certain convergence criterion is satisfied. For solving the linear equations,
the Conjugate Gradient Method was used [54], specifically the code Bi-CGSTAB
[117].

7.2.3 Numerical method: drawback

The major problem with respect to METROPOL for our purposes is related to
the equation solving procedure: in the code, the inner iterations are the Picard
iterations for separate variables within a time step, and outer iterations are the
iterations that deal with the coupling between the salt mass fraction equations
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and the pressure equations. Now, the inner iterations only apply to the salt mass
fraction equations in METROPOL, whereas the ‘inner’ pressure equation is solved
only once per outer iteration. This is because in METROPOL it is assumed that
the pressure equations are ‘nearly’ linear. In our case, the role of the mass fraction
gradient in the pressure equations is quite significant because of the chemical
osmosis term. As we shall see, this has important consequences for the accuracy
and convergence properties of the numerical solver.

7.3 The adapted METROPOL equations

The equations used in this adapted version of METROPOL are basically the same
as presented in Chapter 3, but now extended with a number of features, such as
a gravity term, source terms, non-linear flux parameters and most importantly,
thermal energy terms. The original equations are taken from the METROPOL
and METROHEAT manuals and are based on work presented in [73], [49]. The
nomenclature, as presented in Tables 7.1 7.2 is slightly different from the general
nomenclature defined in this thesis, because much of the terminology has been
copied from the METROPOL manual.

The equations presented here contain all temperature related terms as given in
the METROHEAT code. As we adapted this particular version of METROPOL,
we do list these equations, without any comments, although much of the terms are
based rather on analogy than on fact. This also means that the thermal energy
terms have not been adapted for osmotic effects as they are never considered to
be significant in this study.

In METROHEAT, the following mass and energy balance equations are pre-
sented for the total liquid phase, the dissolved salt and thermal energy respectively:

∂

∂t
(nρ) +∇ · (ρq) = ρiIi − ρIe

∂

∂t
(nωρ) +∇ · (ρωq) +∇ · J = ρiωiIi − ρωIe

∂

∂t
((ρc)effT ) +∇ · (ρcfTq) +∇ · JH + T

βT
β
∇ · q = ρicfTiIi − ρcfTIe.

Subsequently, modified Darcy’s, Fick’s and Fourier’s law are used as the coupled
flow equations for pressure, mass fraction and temperature. The equations adapted
for chemical and electrical effects have been presented in this study in Chapter 3,
the non-linear flux parameters fi are derived from [49] and most of the temperature
terms are constructed from analogy with the other equations.
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Modified Darcy’s law:

(1 + fq|q|)q = −Ke (∇p− ρg) + Λeρ∇ω − T f · ∇T (7.7)

Modified Fick’s law:

(1 + fj|J|)J = −Σeρω∇p−Dρ∇ω − T s · ∇T (7.8)

Modified Fourier’s law:

(1 + fJH |JH |)JH = −H · ∇T − LT · ∇ω −KT · ∇p (7.9)

The liquid density is assumed to depend on the pressure, mass fraction and
temperature [111]:

ρ = ρ0e
β(p−pr)+γω−βT (T−Tr)

The liquid viscosity µ and the intrinsic permeability depend on the salt mass
fraction according to [73]

µ = µ0e
γvω.

k = kre
γkω

The porosity is assumed to depend on temperature and pressure [6]:

n = 1− (1− n0)e−Cr(p−pr)+CT,eff(T−Tr)

The dispersion tensor is taken from Bear [5]:

D = DmI+ (αL − αT )
q · q
|q| + αT |q|I (7.10)

The molecular diffusion coefficient should be adapted for electrophoresis and
semi-permeability, but as the former measure implies that we consider anion flux
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nomenclature 1

roman name unit
b double layer thickness m
cf specific heat of fluid J/kg oC
cs specific heat of rock J/kg oC
Ceff porous medium compressibility ms2/kg
Crock rock compressibility ms2/kg
CT,eff porous medium poro-elasticity ms2/kg
CT,rock rock poro-elasticity ms2/kg
D dispersion tensor m2/s
Dm diffusion coefficient m2/s
D0 reference diffusivity m2/s
E heat flux dispersion tensor J/ms oC
fq non-linear flow factor s/m
fj non-linear dispersion factor m2 s/kg
fj non-linear temperature factor m2 s/kg
F Faraday constant As/mol
g gravity vector m/s2

H heat flux tensor J/ms oC
Iex extraction rate −
Iin injection rate −
J dispersive mass flux kg/(m2 s)
JH dispersive heat flux kg/(m2 s)
k intrinsic permeability m2

ke electro-osmotic permeability m2/Vs
Ke electric/hydraulic conductivity tensor m2/Vs
KT heat transfer coefficient Js/kg
kr reference permeability m2

LT Dufour coefficient J/ms
Ms molar mass kg/mol
n porosity −
n0 reference porosity −
p pressure kg/(ms2)
p0 reference pressure kg/(ms2)
q Darcy velocity m/s
R gas constant Jmol/K
T temperature 0C
Tf thermal osmosis coefficient m2/s oC
Tr reference temperature oC
Ts Soret coefficient kg/(ms oC)
u mobility m2/Vs

Table 7.1: Nomenclature METROPOL equations
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nomenclature 2

greek name unit
αL longitudinal dispersivity in mass flux m
αT transversal dispersivity in mass flux m
αL,T longitudinal dispersivity in heat flux m
αT,T transversal dispersivity in heat flux m
β liquid compressibility at constant T ms2/kg
βT liquid compressibility at constant p ms2/kg
βvis constant relating T and µ 1/oC
∆e electric correction on the dispersion S/m
γ constant relating ρ and ω −
γν constant relating µ and ω −
γk constant relating k and ω −
Λe electrochemical osmosis term J/ms oC
λf fluid thermal conductivity J/ms oC
λs rock thermal conductivity J/ms oC
µ liquid viscosity kg/(ms)
ν dissociation constant −
ρ liquid density kg/m3

ρ0 reference liquid density kg/m3

(ρc)eff porous media effective heat capacity J/oCm3

ρs rock density kg/m3

σ reflection coefficient −
σe electric conductivity S/m
Σe (electric) salt sieving term S/m
ω salt mass fraction −
ω0 reference salt mass fraction −

Table 7.2: Nomenclature METROPOL equations

separately from cation flux, as was shown in Chapter 6, we merely consider a
dependence on the reflection coefficient and introduce an effective molecular dif-
fusivity Deff:

Dm = Deff(1− σ)

The heat conductivity tensor is defined as

H = (nλf + (1− n)λs)I+ ρfcfαL,T − αT,T )
q · q
|q| + αT,T |q|I (7.11)

The salt sieving term is corrected for the streaming potential, as presented in
Chapter 3.

Σe = σ
k

µ
+

(T+ − T−)keMs

Fρω
(7.12)

At this point, we introduce a new coefficient Ke, which is a correction of the
streaming potential on the hydraulic mobility k/µ:
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Ke =
k

µ
+
k2e
σe

(7.13)

The coefficient of chemical osmosis is extended with the membrane potential
term as follows:

Λe =
k

µ
σ
RTν

Ms

− keueffRT

σe
(7.14)

or

Λe =
k

µ
σ
RTν

Ms

− ke(T+ − T−)RT
Fρω

(7.15)

The first term of these equations was present in the original METROPOL code,
however all dependencies were represented by a single lumped parameter. Here,
two versions are given: a simple one, with constant (effective) mobility and elec-
trical conductivity and one with a mass fraction dependent electrical conductivity.

The reflection coefficient is represented by three different descriptions. The
first expression assumes the reflection coefficient to be constant throughout the
domain, the second option is based on the simple description of Katchalsky and
Curran and the third version is the approximate formula derived by Bolt and
Groenevelt, valid for moderate to high concentrations. These expressions have
been discussed in detail in Chapter 2.

σ = σ0

σ = 1− ω

ω0

σ = σbolt =
12Ms ln 2

βρωb2
− π2

(
√

βρω/Msb)3

7.4 Test cases

7.4.1 Simple computational domain

In order to validate the adapted code, a number of numerical experiments was
conducted. In the first experiment, a rather simple domain was chosen, to allow
us to compare the numerical results with a simple closed form solution. Then,
a somewhat more complex, yet theoretical set-up was used to test the model.
Finally, the aforementioned experiment of Keijzer was numerically simulated.
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In the first numerical experiment, we define a simple geometry that consists of
a one-dimensional, homogeneous clay soil with a certain length b. With c0 and
ca the initial and ambient concentrations, and zero initial pressure and no-flow
conditions at the boundaries, the analytical solution reads

c = c0 −
c0 − ca

2

∞
∑

i=0

(−1)i
[

erfc
−(x+ 2b(i+ 1))

2
√
Dt

+ erfc
x− 2bi

2
√
Dt

]

, (7.16)

for the concentration, and

p =
a(c0 − ca)

2

( ∞
∑

i=0

(−1)i
[

erfc
−(x+ 2b(i+ 1))

2
√
εt

+ erfc
x− 2bi

2
√
εt

]

− (7.17)

∞
∑

m=0

(−1)m
[

erfc
−(x+ 2b(m+ 1))

2
√
Dt

+ erfc
x− 2bm

2
√
Dt

]

)

, (7.18)

for the pressure. Here, the following definitions were introduced:

p0 = σνRT (c0 − ca) (7.19)

ε =
DnSµ

k
(7.20)

a =
λ

k
µ
− SD (7.21)

λ = σνRTk/µ, (7.22)

where D is a diffusivity, σ is the reflection coefficient, ν a dissociation constant, R
the gas constant, T temperature, n is porosity, S is storativity, k is permeability,
µ is viscosity and i and m are dummy variables.

Table 7.3 lists the values for the model parameters and Figure 7.1 shows the
development in space and time of the concentration and the pressure. A particu-
larly low value for the reflection coefficient has been adopted to assure convergence.
The graphs for the analytical solution of concentration and pressure are depicted
in Figure 7.1.

Now, in METROPOL, we set up a domain as before, subdivided in 200 grid
blocks in the x-direction and one grid block in the y- as well as the z-direction.
More grid blocks did not improve the results and slowed down computations. The
finite domain extends for 5 meters, as in the analytical model. In the Appendix
listings of three METROPOL input files are shown used for this problem. On
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parameter symbol value

initial concentration c0 (mol/m3) 60
ambient concentration ca (mol/m3) 6
porosity n(−) 1
intrinsic permeability k (m2) 1 · 10−16
diffusion coefficient D(m2/s) 1 · 10−9
temperature T(oC) 20
storativity S(1/Pa) 1 · 10−8
reflection coefficient σ(−) 0.0001
gas constant R (Jmol/K) 8.314
dissociation constant ν (-) 2
dynamic viscosity µ (kg/ms) 1.004 · 10−3
length of domain L (m) 5

Table 7.3: Values of the model parameters, simple analytical model

t(s)
x(m)

p(Pa)
c(mol/m )

x(m)
t(s)

Figure 7.1: Space-time plot of analytical solutions of pressure and concentration
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Figure 7.2: Concentration and pressure profiles; comparison of METROPOL results
with exact solution and numerical results of FlexPDE; time is 104s
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Figure 7.3: Concentration and pressure profiles; comparison of METROPOL results
with exact solution and numerical results of FlexPDE; time is 105s

150



7.4 TEST CASES 151

0

0.002

0.004

0.006

0.008

0.01

1 2 3 4 5

numerical:FlexPDE

numerical:METROPOL

exact solution

w(-)

x(m)

-20

-10

0

10

20

30

1 2 3 4

p(Pa)

x(m)
numerical:FlexPDE

numerical:METROPOL

exact solution

Figure 7.4: Concentration and pressure profiles; comparison of METROPOL results
with exact solution and numerical results of FlexPDE; time is 5 · 105s

the first page of the Appendix, the general script (USEFIL) file used is shown,
as well as the mesh input file. The second page shows the general input file. In
Figures (7.2), (7.3), (7.4) and (7.5), the comparison of the exact solution with
the numerical results of METROPOL and the numerical results of FlexPDE are
depicted. The output times are t = 104s, t = 105s, t = 5 · 105s and t = 106s
respectively.

From these graphs we observe that the results of the numerical modelling with
FlexPDE are not entirely satisfactory for small times. This is because the initial
salt profile implies a large salt concentration gradient. The pressure profile shows
an obvious anomaly at the location of the initial salt concentration gradient. How-
ever, the FlexPDE results show somewhat better correspondence with the exact
solution than the METROPOL results for larger times.

We also show the influence of electro-osmosis in this numerical experiment. For
a somewhat higher reflection coefficient σ = 0.0015, a constant electrical conduc-
tivity σe = 0.1 S/m, and an electro-osmotic permeability of ke = 6.3 · 10−10m2/Vs,
the pressure development by combined chemical and electro-osmosis is shown in
Figure 7.6. For completeness, the numerical solution for the situation without
electro-osmosis and the comparison with the exact solution are shown. The Flex-
PDE results are, again, not exact near the location of the salt concentration gra-
dient. The METROPOL results compare not as well with the exact solution as
the previous results. This is attributed to the fact that the reflection coefficient is
higher, and hence the non-linear term in the pressure equations is more significant.
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Figure 7.5: Concentration and pressure profiles; comparison of METROPOL results
with exact solution and numerical results of FlexPDE; time is 106s
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Figure 7.6: Electrochemical osmosis; comparison of numerical methods
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0 x a

clay water

b

parameter value in clay value in water
n(−) 0.5 1
T (K) 298 298
k(m2) 1 · 10−19 1 · 10−13
D(m2/s) 1.9 · 10−12 1.5 · 10−9
Ss(1/Pa) 1 · 10−8 4.6 · 10−10
σ(-) 0.024 0
length (m) a = 0.05 b = 0.1

Figure 7.7: Simple composite domain and relevant parameters

p(Pa)

time(s)

p(Pa)

time(s)

Figure 7.8: Pressure profile simple composite domain at x=0.03m (left) and x=0.05m
(right)

7.4.2 Simple composite domain

The second model consists of the domain, shown in Figure 7.7, i.e. composed of
a saturated clay region and a water region. The graphs in Figure 7.8 show the
comparisons between the results of the numerical calculations of the time profiles
for pressure in the middle of the clay and at the interface. The comparison with
the FlexPDE results is very good.

7.4.3 Keijzer domain

The third model is called the Keijzer model, referring to experiments performed
by Keijzer [63], where a bentonite clay under an overburden pressure of 4 bar, was
subjected to a salt concentration gradient; the model setup is identical to the one
presented in chapter 5, except for some slightly alterated values of the reflection
coefficient, the diffusion coefficients and the compressibilities. The corresponding
domain is shown in Figure 7.9.

Figures (7.10) and (7.11) show the correspondence of the numerical results
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0
x 

ba

clayporous 
stone

porous 
stone

water
high c

water
low c

parameter value in clay value in porous stone
ci (mol/l) 0.1 0.1 (l), 0.01 (r)
n(−) 0.5 0.56
k(m2) 1.2 · 10−19 1 · 10−13
D(m2/s) 2.6 · 10−13 1.2 · 10−10
T (oC) 25 25
Ss(1/Pa) 1 · 10−8 2 · 10−6
σ(-) 0.024 0
length (mm) a = 2.3 b− a = 7.2

Figure 7.9: Modelling domain Keijzer experiment and relevant parameters
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Figure 7.10: Time profile pressure for Keijzer experiment; comparison FlexPDE and
METROPOL

generated with METROPOL and those generated with FlexPDE. Although this
correspondence is not perfect, this graph shows that it is possible to model a
real experiment with METROPOL. Choosing the time step and the convergence
parameters, however, turned out to be quite a nuisance, which makes this a very
inconvenient method of modelling an osmosis problem, especially if we compare
this to the ease of use of FlexPDE. The sharp incline of pressure in time, the
aforementioned high initial salt concentration gradients and the large difference
between, for example, permeability between regions, are factors that complicate
numerical matters greatly. But most problems arise because of the relatively high
non-linearity of the pressure equations.
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Figure 7.11: Pressure profile across setup for Keijzer experiment; comparison FlexPDE
and METROPOL; t = 105s and t = 106s

7.5 Using METROPOL: conclusions
In this chapter, three distinct chemical osmosis problems were simulated to show
the applicability of the adapted METROPOL code for modelling the influence
of osmosis on groundwater flow and solute transport. The METROPOL code
was adapted for chemical and electro-osmosis, and a dependence of the reflection
coefficient of concentration was introduced.

Generally speaking, simple models without any extremities such as sharp tran-
sitions or high salt concentration gradients, can be modelled without major prob-
lems with METROPOL. However, because of the nature of the solver in the code,
coupled effects can be modelled correctly only to a certain extent. The pressure
equations are assumed to be nearly linear. Consequently, the non-linear pressure
equations are solved only once per coupling iteration. This was evidently done to
limit the computational time. However, strong coupling behaviour will therefore
be difficult to simulate accurately. As the chemical osmosis term, in the problems
under consideration, is relatively large, this is a major disadvantage. It is there-
fore only recommended to use the code for osmosis problems if the coupling term
is relatively small. To make the code really suitable for dealing with problems
of osmosis, there is no other option than to rewrite the solver code to make the
pressure equations go through the full inner iterative scheme as well.
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USEFIL
MESH INPUT: 2iosm_ex.in
MESH: 2iosm_ex11.mes
MESH PRINT: 2iosm_ex.prn
METROPOL-3 INPUT: 2ios_ex.in
METROPOL-3 PRINT: test.prn
METROPOL-3 UNFORMATTED OUTPUT: 2ios_ex.unf

METROMESH INPUT
MESH ID: meshos_ex8
PROJECT: test
mesh for simple example
END HEADING
NUMBER OF POINTS
201 2 2
CORNERS
0.0 0.0 0.0
50 0.0 0.0
50 0.1 0.0
0.0 0.1 0.0
0.0 0.0 0.1
50 0.0 0.1
50 0.1 0.1
0.0 0.1 0.1
EDGE 1
1
EDGE 2
1
EDGE 3
1
EDGE 4
1
EDGE 5
1
EDGE 6
1
EDGE 7
1
EDGE 8
1
EDGE 9
1
EDGE 10
1
EDGE 11
1
EDGE 12
1
SURF 1
1
SURF 2
1
SURF 3
1
SURF 4
1
SURF 5
1
SURF 6
1
VOLUME
1
OUTPUT OPTIONS
1 1 0 0 0 0
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METROPOL-3 INPUT
MESH ID: meshos_ex8
PROJECT: osmosis simple example 2
test run
END HEADING
0
002
51 150000 1e-4 1e-4
151 150000 1e-2 1e-2
151 150000 1e-2 1e-2
1e-4 1e-4 1e-2 1e-2 1e-2 1e-2 500 1e10 1e5
0 0 0 0
998.2 0 0 0 0 0
1 1.004e-3
0 0
0.58 4186
DISTRIBUTED DATA
startcos2_ex.in
startpos_ex.in
starttos2_ex.in
cmat.in
densm.in
kxos_ex.in
kxos_ex.in
kxos_ex.in
zero.in
zero.in
zero.in
poros_ex.in
compros_ex.in
zero.in
zero.in
diffmos_ex.in
zero.in
zero.in
2dfxos_ex.in
2dfxos_ex.in
2dfxos_ex.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in
zero.in

BOUNDARY CONDITIONS
SURFACE 1
1
1,200,1,1
SURFACE 2
1
1,200,1,1
SURFACE 3
1
200,200,1,1
SURFACE 4
1
1,200,1,1
SURFACE 5
1
1,1,1,1
SURFACE 6
1
1,200,1,1
OVERWRITE
0
INTERNAL PRESSURE
0
INTERNAL SALT MASS FRACTION
0
INTERNAL TEMPERATURE
0
PROFILE POINTS
0 0 0
ELEMENTS FOR SUBROSION
0 0 0 
OUTPUT TIMES 
6
1e5
1 1 1 1 1 1
5e5
1 1 1 1 1 1
1e6
1 1 1 1 1 1
2.5e6
1 1 1 1 1 1
5e6
1 1 1 1 1 1
1e7
1 1 1 1 1 1
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Summary

In problems of groundwater flow and solute transport in clayey soils subject to
salt concentration gradients, chemical and electro-osmosis can be too important
to disregard, as is commonly done in geohydrology. In this thesis, we consider
the quantification of these coupled effects to be able to simulate experiments and
natural situations involving possible chemically and electrically driven water flow.

After a general introduction in Chapter 1, in Chapter 2 we follow the route
from clay structure to chemical osmosis: the building blocks of clay are negatively
charged platelets that, when compacted in soil, impose electrical restrictions on
charged particles that migrate through the clay under a variety of gradients. This
means that the clay can be considered to be a semi-permeable membrane, and when
a salt concentration gradient is present, all the conditions for chemical osmosis are
met. The water flux, under these circumstances, is therefore dependent on the
pressure gradient as well as the salt concentration gradient. It is shown that it can
depend on gradients of electrical potential as well, in which case we speak of electro-
osmosis. Assuming we may extend Darcy’s law linearly with a salt concentration
and an electrical potential gradient, the corresponding coupling parameters are
called the reflection coefficient in the case of chemical osmosis and the electro-
osmotic permeability in the case of electro-osmosis. After a review of some of
the occurrences and applications of these processes, we list different expressions
available for the reflection coefficient and the electro-osmotic permeability. For the
former, the different formulas are compared; in the case of the latter coefficient,
it is shown how certain assumptions can reduce all expressions to one particular
formula. Finally, some aspects of two additional parameters, i.e. the electrical
conductivity and the diffusion coefficient are discussed.

To obtain a full model for simulating osmotic processes in groundwater, the
equations that follow from non-equilibrium thermodynamics are derived in Chap-
ter 3. The equations are partly based on existing formulas. A number of aspects
however, have been adapted because of serious shortcomings in equations appear-
ing in literature. Along with some general mass balance equations, we are now
equipped with the relevant modelling tools.
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In Chapter 4, the complete set of equations is presented and utilized, where
we derive analytical solutions for simplified, general situations. These solutions
clearly show the simultaneous development of pressure and concentration profiles
due to osmosis. The simplified setup is then used to gain some insight in issues
that relate to osmosis. For example, we present the different timescales involved
with modelling osmosis in groundwater, and we justify some assumptions intro-
duced in this study. The influence of osmosis on molecular diffusion of a tracer is
investigated, and the importance is shown of the choice of the dependence of the
reflection coefficient on salt concentration. In addition, we show how our model
correctly describes the limiting behaviour of the reflection coefficient.

Chapter 5 puts the model to the test: two chemical osmosis experiments
from literature - one performed in the laboratory and one in a field situation -
are modelled, where the emphasis is on the applicability of assumptions used to
obtain (semi-)analytical solutions. It is shown by dimensional analysis how the
storage parameters of the system determine this applicability. Furthermore, the
frequently applied Boussinesq approximation is shown not too hold for problems
involving osmosis in groundwater.

The real challenge is to apply the extension of Darcy’s law including chemical as
well as electrical effects. In Chapter 6 the influence of the membrane potential on
the osmotic pressure and concentration development is studied. The value of the
membrane potential found in a particular experiment is derived from theoretical
first principles. Furthermore, the membrane potential induces an electro-osmotic
counterflow, that can be turned off by (virtual) shortcircuiting the experimental
setup. The model of Chapter 5, extended with electro-osmosis, is shown to be able
to simulate the transient buildup and decline of pressure, as well as the evolution
of concentration and electrical potential. The effect of shortcircuiting is shown to
correspond with letting the electrical parameters pass to zero.

In Chapter 7, the results are presented of adapting an existing finite ele-
ment groundwater code with chemical and electro-osmosis. This code, called
METROPOL, is used to model groundwater flow and solute transport in, for
example, conditions of high salt concentration gradients. The existing, incorrect
term for salt concentration driven water flow was adapted and electrical coeffi-
cients were added. To test the code, some sample problems were constructed.
First, a simple setup for comparison with analytical and other numerical results
was used. This showed that METROPOL produced better results for situations
with high salt concentration gradients than some other (simple) numerical codes.
As the models were made more complicated however, METROPOL turned out to
be more and more unsuitable for our purposes. The solver assumes the pressure
equations to be nearly linear: when chemical osmosis becomes considerable, this
leads to convergence and accuracy problems.
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• Chapter 2 and parts of Chapter 4 form the basis of a review paper on aspects
the reflection coefficient, to be submitted to a journal yet unknown

• Parts of Chapters 3 and 5 have appeared as the article: S. Bader, H. Kooi
2005 Modelling of solute and water transport in semi-permeable clay mem-
branes: comparison with experiments Advances in Water Resources 28 203-
214

• Parts of Chapter 4 have appeared as a paper in the (refereed) proceedings
of Symposium on the mechanics of physicochemical and electromechanical
interactions in porous media 2003

• Chapter 6 is a transcription of the paper S. Bader, K. Heister The ef-
fect of membrane potential on development of chemical osmotic pressure in
compacted clay Submitted to Transport in Porous Media
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Samenvatting

De gebruikelijke manier om grondwaterstroming modelmatig te beschrijven is met
behulp van de wet van Darcy. Het is echter bekend dat in bepaalde situaties,
zoals die veelvuldig voorkomen in Nederland, deze vergelijking niet altijd voldoet.
Namelijk, in kleibodems kan de stroming van grondwater ook bëınvloed worden
door aanwezige zoutgradienten. Dit komt door een proces dat we kennen als
chemische osmose: een semi-permeabel membraan, zoals klei, laat geladen deelt-
jes in beperkte mate door terwijl het geen belemmering vormt voor water. Dit
betekent dat, wanneer een zoutgradient aanwezig is, chemische osmose verant-
woordelijk zal zijn van het stromen van water van de zoete kant naar de zoute
kant van het membraan. Nu blijkt dat dit wiskundig beschreven kan worden door
de wet van Darcy uit te breiden met een term gerelateerd aan de zoutgradient.
Sterker nog, dit geldt evenzeer voor elektrische potentiaalgradienten, waar we het
elektro-osmose noemen en temperatuurgradienten (thermo-osmose).

In dit proefschrift hebben we een wiskundig model opgesteld om de rol van
chemische en elektro-osmose in grondwaterstroming te beschrijven om zo de ge-
lijktijdige ontwikkeling van druk, zoutconcentratie en elektrische potentiaal te kun-
nen voorspellen. Dit is met name gedaan om de uitkomsten van experimenten te
verklaren, die uitgevoerd zijn in laboratoria en in het veld om deze effecten aan te
tonen.

Na de introductie in Hoofdstuk 1, zien we in Hoofdstuk 2 hoe uit de in-
terne structuur van klei volgt, waarom osmose een rol kan spelen: klei bestaat uit
negatief geladen plaatjes, die bij het samendrukken van klei, elektrische restricties
opwerpen voor ionen die door de klei bewegen. Dit betekent dat klei gezien kan
worden als een semi-permeabel membraan. Als nu ook een zoutgradient aanwezig
is, gaat chemische osmose een rol spelen. We nemen aan dat de wet van Darcy
uitgebreid kan worden met chemische osmose en elektro-osmose door de Darcy
flux lineair af te laten hangen van de zoutgradient en de potentiaalgradient. De
zogenaamde koppelingsparameters die hiermee samenhangen zijn de coefficienten
die de relatie tussen stroming van water en deze gekoppelde processen weergeven.
In het geval van chemische osmose is dit de reflectiecoefficient, die de mate van
semi-permeabiliteit weergeeft, en de zg. elektro-osmotische permeabiliteit in het

163



164 SAMENVATTING

geval van elektro-osmose. Behalve een uitgebreid overzicht van het voorkomen en
toepassingen van de processen, worden in een groot deel van het tweede hoofd-
stuk deze parameters onder de loep genomen. Er wordt gekeken naar beschikbare
theoriën in de literatuur en deze worden vergeleken, en waar nodig, gecorrigeerd.
Ook andere parameters die van belang zijn in dit werk, passeren de revue, zoals
daar zijn de diffusiecoefficient en de coefficient voor elektrische geleiding.

Om een volledig model voor het simuleren van osmose in grondwater op te
stellen, worden de vergelijkingen afgeleid in Hoofdstuk 3. Hoewel voor een deel
gebaseerd op bestaande formuleringen, worden belangrijke tekortkomingen daarin
gecorrigeerd. Verder worden algemene vergelijkingen voor behoud van massa van
water en opgeloste stoffen gegeven.

In Hoofdstuk 4 passen we deze vergelijkingen toe. Door schaling houden we
een een simpele set van vergelijkingen over waarvoor we betrekkelijk eenvoudige
oplossingen kunnen bemachtigen waaruit algemene eigenschappen van osmose in
grondwater kunnen worden gededuceerd. Zo kijken we bijvoorbeeld naar de ver-
schillende tijdschalen die van belang zijn en beschouwen we het loslaten van een
tracer onder invloed van osmose.

In Hoofdstuk 5 beschrijven we hoe twee experimenten uit de literatuur, één
uitgevoerd in het laboratorium en één in het veld, zijn gemodelleerd, en kijken we
of de opbouw van druk en het verval van concentratie, zoals waargenomen in deze
experimenten, gesimuleerd kan worden. De nadruk ligt hier op de toepasbaarheid
van de aannames die we gebruiken om tot de versimpeling van de vergelijkingen te
komen. Het blijkt dat de parameter die samendrukbaarheid van de bodem en het
water combineert het belangrijkste is in deze analyse. Een bepaalde eigenschap
blijkt er ook voor te zorgen dat de zogenaamde Boussinesq aanname, die vaak
wordt gebruikt, in ons geval taboe is.

Wanneer ook elektrische effecten worden meegenomen in het modelleren, gaan
aanzienlijk veel meer processen een rol spelen. Dit wordt aangetoond in Hoofd-
stuk 6. Hier wordt verslag gedaan van experimenten aan de zogenaamde mem-
braanpotentiaal en zijn invloed op de opbouw van osmotische druk. De membraan-
potential ontstaat wanneer ionen migreren door een poreus medium. Positief en
negatief geladen ionen blijken onder invloed van bijvoorbeeld een geladen poreuze
medium, niet allemaal even snel te bewegen. Omdat ze toch als één zout ‘oper-
eren’, ontstaat een elektrische potentiaal die zorgt dat de verschillende ionen bij
elkaar blijven. Deze membraanpotentiaal is gemeten in een experiment waar, zoals
in vorige beschreven experimenten, klei wordt blootgesteld aan een zoutgradient,
en met behulp van een geavanceerd model blijkt de waarde van deze potentiaal
te volgen uit theoretische overwegingen. Nu wekt de membraanpotentiaal op zijn
beurt ook weer een elektro-osmotische waterstroming op die de stroming door
chemische osmose tegenwerkt. Dit blijkt nu niet alleen geobserveerd te zijn tijdens
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het experiment, maar kan ook worden verklaard met behulp van het model. Een
belangwekkend resultaat is dat het kortsluiten van de opstelling om het effect van
de membraanpotentiaal te duiden, overeen blijkt te komen met het ‘op nul zetten’
van een parameter in de vergelijkingen.

In Hoofdstuk 7 ten slotte, wordt verteld hoe de bestaande computercode
METROPOL is aangepast, opdat simulaties met chemische en elektro-osmose
gedaan kunnen worden. Deze grondwatercode, gebaseerd op de eindige elementen-
methode, wordt normaliter gebruikt om bijvoorbeeld verval van radio-actieve stof-
fen in een zeer zoute bodem te voorspellen. In dit werk laten we zien hoe de
code nu ook geschikt wordt om experimenten te modelleren waar osmose een rol
speelt. Hiertoe zijn drie verschillende modeldomeinen opgesteld: een zeer simpele,
om vergelijking met analytische oplossingen mogelijk te maken, een wat meer re-
alistischer domein, en één domein waarmee een in Hoofdstuk 5 eerder genoemd
experiment wordt nagebootst. Het blijkt echter dat de solver die aan de basis
ligt voor METROPOL ongeschikt is om met grote niet-lineaire effecten in de
drukvergelijkingen om te gaan: a priori is het namelijk een veronderstelling in
de code dat deze effecten klein zijn, dit om rekentijden te verkorten. Wanneer
chemische osmose een aanzienlijke rol speelt, steken onvermijdelijk convergentie-
en nauwkeurigheidsproblemen de kop op. Bij kleine ‘osmotische aberraties’ is de
code echter zeer geschikt en geeft betere resultaten dan andere programma’s.

• Hoofdstuk 2 en delen van Hoofdstuk 4 vormen de basis van een overzichtsar-
tikel over verschillende aspecten van de reflectiecoefficient; dit wordt opges-
tuurd naar een nader te bepalen tijdschrift

• Delen van Hoofdstukken 3 en 5 zijn verschenen als het artikel: S. Bader,
H. Kooi 2005 Modelling of solute and water transport in semi-permeable clay
membranes: comparison with experiments Advances in Water Resources 28
203-214

• Delen van Hoofdstuk 4 zijn verschenen als een artikel in de (peer reviewed)
proceedings van het Symposium on the mechanics of physicochemical and
electromechanical interactions in porous media 2003

• Hoofdstuk 6 is een betrekkelijk directe transcriptie van het artikel S. Bader,
K. Heister The effect of membrane potential on development of chemical
osmotic pressure in compacted clay hetgeen is opgestuurd naar het tijdschrift
Transport in Porous Media
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Glossary

• abnormal osmosis The flow of water due to a concentration difference in
the opposite direction as expected by chemical osmosis; explained by electro-
osmosis induced by a membrane potential [71]

• anion exclusion The restrictions imposed by the double layers on anions
meaning to migrate through a clay sample, also called Donnan exclusion or
negative adsorption

• anomalous osmosis According to Gu, Lai (a49), Mow the flow rate of sol-
vent in a charged porous membrane is not proportional to the concentration
difference; this flow rate is called anomalous osmosis

• bi-ionic potential The counterpart of membrane potential for solutions of
different ionic composition

• capillary osmosis Additional osmotic water flux due to slipping of solute
particles near the surface of clay platelets; when the size of the particles is
larger than the roughness of the surface, there is a phase-separation at the
surface, such that a layer that can act as a lubricant will develop [21]

• cataphoresis See electrophoresis

• chemical osmosisWater flow due to a gradient of chemical potential/concentration;
chemical osmosis is strictly connotated with the presence of a semi-permeable
membrane (like clay), that permits the passage of solvent, whereas it omits
the passage of solute; the word osmosis is derived from the greek word ωσµoσ,
meaning ’to push’

• chemico-osmosis See chemical osmosis

• chemico-osmotic mobility The coefficient relating the salt concentration
gradient gradient to the specific discharge

• counter-advection The advection induced by the chemico-osmotic flux
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168 GLOSSARY

• diffuse double layer A clay surface and the ionic distribution in its vicinity
due to surface negative electric charge

• diffusion osmosis water transport due to diffusion of dissolved solutes/clay
particles [94]; electro-osmosis could be seen as a special case of this, because
diffusion-osmosis also deals with the dragging along of water by the cations

• diffusion potential: according to Bolt [9], diffusion potential is the electri-
cal potential due to a salinity gradient, caused by different ionic transport
numbers; it is built up of a liquid-junction potential (the fluid) and a mem-
brane potential (the membrane)

• diffusiophoresis The transport of particles in a concentration field due to
the formation of diffuse (and mobile) adsorption layers of neutral molecules
or ions formed at the surface of the particles [21]

• disjoining pressure The additional pressure in a thermodynamically equi-
librium interlayer compared to the pressure in the bulk solution [21]

• DLVO theory Theory of stability of lyophobic colloids; Derjaguin Landau
Verwey Overbeek theory

• Donnan exclusion Negative adsorption of anions due to the repulsion of
these ions near the negatively charged surface

• Donnan osmosis water flow due to concentration difference between cations
in a clay solution and in a salt solution on one hand and anions in a clay
solution and in a salt solution on the other hand [59]

• Donnan potential Difference between clay solution potential and salt so-
lution potential [59]

• Dorn effect See migration potential

• Dufour effect Heat flow due to an chemical potential difference

• electro-endosmosis See electro-osmosis

• electro-migration The transport of ions in the pores under the influence
of an electric field

• electro-osmosis Water flow due to an electrical gradient; if an electric po-
tential is applied across a clay mass, cations are attracted to the cathode.
There is an excess of cations in the (wet) clay, due to the net negative charge
on the clay particles. As these cations migrate to the cathode, they drag
water with them, causing water movement towards the cathode [80]
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• electro-osmosis permeability Coefficient representing electro-osmosis: ke
m2/Vs

• electrophoresis When an electrical potential gradient is applied, charged
double layer particles are attracted electrostatically to one of the electrodes
and repelled from the other; electrophoresis involves discrete particle trans-
port through water (electro-osmosis involves water transport) [80]

• electrosedimentation See migration potential

• exclusion potential The electrical potential difference, according to Revil
[98], caused by the electrical restrictions of the membrane, see membrane
potential

• filtration efficiency See reflection coefficient

• Gouy Chapman theory Theory of the diffuse double layer [115]

• Hittorf transport number Relative mobility of an ion: ratio of ion mo-
bility and sum of mobilities of all ions

• hyperfiltration See salt-sieving

• iontophoresis Movement of (large) ions due to an electrical potential gra-
dient, used in medicine

• liquid junction potential A potential in an electrolyte needed to compen-
sate different transport numbers of ionic constituents

• membrane potential Electrical potential (difference) equal to the liquid-
junction potential plus the exclusion potential [98] or merely the potential
caused by the restrictions of the membrane itself [9]

• microfiltration Designates a membrane separation process similar to ultra-
filtration but with even large membrane pore size allowing particles in the
range of 0.2 to 2 micrometers to pass through. The pressure used is generally
lower than that of ultrafiltration processes.

• membrane efficiency See reflection coefficient

• migration potentialWhen charged colloidal particles dispersed in a liquid
phase sink to the bottom due to gravity, a potential difference is generated
known as migration of sedimentation potential

• nanofiltration Same as ultrafiltration, but with much smaller pores, hence
a finer form of filtration; not as fine as reverse osmosis though.
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• negative adsorption In a diffuse double layer, anions are repelled from the
surface, as if they are negatively adsorbed

• negative (anomalous) osmosis The osmotic flow of electrolyte solutions
through a charged porous membrane that occurs from the concentrated side
to the dilute side (K and C)

• normal osmosis See chemical osmosis

• osmosis In general the name for water flow caused by a salt concentration
gradient in the presence of a semi-permeable membrane. In this study, and
often in soil science, the general name for non-hydraulic water transport.
The former process then is called chemical osmosis. Other examples are
electro-osmosis and thermo-osmosis

• osmotic selectivity coefficient See reflection coefficient

• osmotic pressure The pressure π that must be applied to stop the flow
caused by osmosis

• Peltier effect Heat flow due to an electrical potential difference

• reflection coefficient Parameter that expresses the extent of semi-permeability
of a membrane

• reverse osmosis Hydraulically driven water transport in the presence of
a counteracting osmotic gradient [63]; reverse osmosis, hyperfiltration and
salt-sieving are the same phenomenon; it is the ‘finest’ form of filtration; as
with ultrafiltration, nanofiltration and microfiltration, selection of particles
is based on charge an size properties.

• salt sievingWhen salt water is pushed trough a clay, solutes may be sieved
through the clay because of geometrical restrictions (reverse osmosis, ultra-
filtration etc.) or because of electrical restrictions; the latter effect is called
hyperfiltration of salt-sieving

• Saxen’s lawDenotes the equivalence between streaming potential and electro-
osmosis

• sedimentation potential See migration potential

• Seebeck effect Electrical current due to a temperature gradient.

• self potential Sum of potentials measured in soils: consist of streaming and
membrane potential
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• Soret effect See thermophoresis

• streaming current Electrical current as well as current of discrete charged
particles due to water transport [80]

• streaming potential Electrical potential difference due to water flow: a
hydraulic head difference induces a migration of double layer charges that
make for a potential difference [80]

• thermo-electricity See Seebeck effect

• thermo-osmosis Flow of liquid, driven by a temperature gradient

• thermophoresis Flow of ions due to a temperature gradient [21]

• ultrafiltration movement of solute relative to solvent, induced by a me-
chanical pressure [62]

• zeta potential Electrokinetic potential in the double layer at the interface
between a particle which moves in an electric field and the surrounding liquid
[91]
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Nomenclature

b double layer thickness m
c̄i ion concentration within the membrane mol/m3

cf salt concentration mol/m3

ci ion concentration mol/m3

cs concentration of solute mol/m3

fi friction coefficient −
g acceleration of gravity m/s2

gf parameter relating σf and concentration S/m
h hydraulic head m
k intrinsic permeability m2

kT thermo-osmotic permeability m2/Ks
ke electro-osmotic permeability m2/Vs
lt water film thickness Å
m cementation exponent -
n porosity -
ni number of moles of i -
n0 reference porosity -
p pressure Pa
p0 reference pressure Pa
q energy per volume element J/m3

qi ion concentration on solid mol/m3

q specific discharge m/s
s non-dimensional DDL quantity -
s entropy of a volume element J/(K m3)
s mass of absorbed solute per unit area of solid matrix kg/m2

t time s
t0i free solution ionic transport number -
ti microscopic Hittorf transport number of an ion -
u mobility m2/Vs
u double layer parameter -
u internal energy per unit volume element J/m3
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174 NOMENCLATURE

ui mobility of ion i m2/Vs
v volume element m3

vi velocity of constituent i m/s
w relative thickness mobile layer DDL -
x position m
xm molar fraction -
y relative thickness immobile layer DDL -

A area m2

B counter-ion surface mobility m2/Vs
C capacitance F
C cation exchange capacity meq/g
Cs capacitance of porous medium F
Cf capacitance of fluid F
D effective diffusion coefficient of porous medium m2/s
D0 free diffusion coefficient of salt in water m2/s
Df free diffusion coefficient of salt in water m2/s
Di microscopic diffusion coefficient of ion m2/s
Di diffusion coefficient of ion m2/s
Dr effective diffusion coefficient corrected for retardation m2/s
E cation exchange capacity mol/kg
F0 formation factor −
F Faraday constant C/mol
Fl driving force on liquid phase N
H parameter used in the calculation of ke m2/Vs
Ii production of i kg/(m3s)
I electrical current density A/m2

Jm solute mass flux relative to the porous medium kg/m2s
Jn solute molar flux relative to the porous medium mol/m2s
Jq energy flux J/(m2 s)
Js entropy flux J/(K m2 s)
Jdm diffusive solute mass flux relative to the solution kg/m2s
Jdn diffusive solute molar flux relative to the solution mol/m2s
Kc chemico-osmotic parameter Jm3s/(kg mol)
Ke electro-osmotic parameter m2/Vs
Ke hydraulic mobility corrected for electro-osmosis m3s/kg
Kd distribution coefficient m3/kg
Kij selectivity coefficient var.
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L typical length m
LD Debye length m
Le typical length of tortuous path m
Lij coupling coefficient var.
Ms molar mass kg/mol
P pressure Pa
Q charge density C/m2

Qv excess surface charge density C/m2

R gas constant J/(mol K)
R retardation parameter -
Rm ratio of ion–membrane friction coefficients -
Rw ratio of ion–water friction coefficients -
Rwm ratio of ion–water friction coefficients -
S entropy J/K
S macroscopic adsorbed mass fraction -
Ss effective storativity of porous medium 1/Pa
T temperature K or oC
Ti macroscopic Hittorf transport number of an ion -
U relative mobility corrected for ke -
U internal energy J
Ū macroscale adsorption term mol/ms
V electrical potential V
Vi volume of i-th reservoir m3

V̄s molar salt volume m3/kg
X excess surface charge mol/m3

Xi driving forces var.

α soil compressibility 1/Pa
β liquid compressibility 1/Pa
βs mobility of counter-ions m2/Vs
βT coefficient of thermal expansion 1/K
γ parameter that relates fluid density to mass fraction -
γ relative thickness of double layer -
γ constant relating C and Kd -
γf solute activity coefficient m3/mol
γt ratio of macroscopic and microscopic Hittorf number -
δ position of imaginary plane in double layer m
ε perturbation parameter -
εr electrical permittivity C2/(Nm2)
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176 NOMENCLATURE

ζ zeta potential V
η kinematic viscosity m2/s
θ water content -
θ effective mobility coefficient -
κ0 reciprocal Debye length 1/m
κe dielectric constant -
λ chemico-osmotic mobility m5/(mol s)
Λ effective mobility m2/Vs
Λei chemico-osmotic mobility corrected for electro-osmosis m5/(mol s)
µ dynamical viscosity kg/ms
µi chemical potential of i-th constituent kg/m4s
ν dissocation coefficient -
ξ ratio of σs and σf -
ξ non-dimensional DDL quantity -
π osmotic pressure Pa
ρ charge density C/m3

ρf density of fluid phase kg/m3

ρs density of solid phase kg/m3

σ reflection coefficient -
σent entropy source strength J/(K m3 s)
σe bulk electrical conductivity S/m
σf electrical conductivity of fluid S/m
σi reflection coefficient corrected for electrical effects -
σχ surface electrical conductivity S/m
σs surface electrical conductivity S/m
Σ surface charge density C/m3

τ tortuosity -
φ electrical potential -
Φ dissipation function J/(m3 s)
ψ (local) electrical potential -
ψa (local) wall electrical potential -
ω mass fraction -
ω solute permeability coefficient m2mol/Js
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