"Mixing processes in enhanced and natural attenuation"

Phil Ham

Bodem Diep 2003, Zeist.

Phil Ham

July 28, 2003

Delft University of Technology

Status Report!

July 28, 2003

Gramling et al. (2002)

Gramling *et al.* consider 1-D, instantaneous colourimetric reactions between solutions of aqueous Na₂EDTA⁴⁻ and CuSO₄ (both experimental and analytical solution).

July 28, 2003

Introduction (1)

- 2-D Extension of the work by Gramling *et al.* (2002)
- Reaction of the form A + B \rightarrow AB, where $r_{AB} = -r_A = -r_B$
- Contour distribution:

Introduction (2)

Reactant/Product distributions:

Mass balance equations

July 28, 2003

Mass balance equations

Introducing the dimensionless parameters

$$x^* = \frac{x}{\alpha_L}, \quad y^* = \frac{y}{\alpha_L}, \quad \text{and} \quad q^* = \frac{q_x}{q_o},$$
(7)

and substituting these into (6) gives

$$n\frac{\partial C_B^T}{\partial t} + \frac{q_o q^*}{\alpha_L}\frac{\partial C_B^T}{\partial x^*} - \frac{q_o q^*}{\alpha_L}\frac{\partial^2 C_B^T}{\partial x^{*2}} - \frac{q_o q^* \alpha_T}{\alpha_L^2}\frac{\partial^2 C_B^T}{\partial y^{*2}} = 0.$$
(8)

Multiplying (8) by α_L/q_o , introducing the dimensionless parameter $t^* = tq_o/n\alpha_L$ and the new variable $\beta = \alpha_T/\alpha_L$, and dropping the * notation for convenience yields

$$\frac{\partial C_B^{\ T}}{\partial t} + q \frac{\partial C_B^{\ T}}{\partial x} - q \frac{\partial^2 C_B^{\ T}}{\partial x^2} - \beta q \alpha_L^2 \frac{\partial^2 C_B^{\ T}}{\partial y^2} = 0, \tag{9}$$

i.e., the mass balance equation for C_B^T in dimensionless notation. Let $q_o = q_x = 1$ and $C_B^T(x, y, t) = C_B^T(s(x, t), y, t)$; the application of the *Chain Rule* gives

$$\frac{\partial C_B^{\ T}}{\partial t} = \frac{\partial^2 C_B^{\ T}}{\partial s} + \beta \frac{\partial^2 C_B^{\ T}}{\partial y^2},\tag{10}$$

which will be the starting point for further analysis.

July 28, 2003

Plume Length (1)

$$s^{\frac{1}{2}} e^{s} K_{0}(s) = 1.25331414 - 0.07832358 \left(\frac{2}{s}\right) + 0.02189568 \left(\frac{2}{s}\right)^{2} - 0.01062446 \left(\frac{2}{s}\right)^{3} + 0.00587872 \left(\frac{2}{s}\right)^{4} - 0.00251540 \left(\frac{2}{s}\right)^{5} + 0.00053208 \left(\frac{2}{s}\right)^{6} + \varepsilon,$$

where $|\varepsilon| < 1.9 \ 10^{-7}$. As a first approximation only the first term on the right-hand side of the series expansion is included, i.e.

$$s^{\frac{1}{2}} e^s K_0(s) \approx 1.25331414.$$

Substitution of this approximation in (25) yields

$$L \approx 2 \frac{F1.25331414}{0.1} \frac{1}{\alpha_T} \approx (2(1.25331414)) \cdot 100F^2 \frac{1}{\alpha_T} = 100\pi F^2 \frac{1}{\alpha_T}.$$

$$\mathbf{L} = f(\mathbf{a}_T) \operatorname{not} f(\mathbf{a}_L)$$

July 28, 2003

Plume Length (2)

As a next, more accurate approximation, the second

term at the right-hand side of the series expansion for K_0 is also included, i.e.

$$s^{\frac{1}{2}} e^s K_0(s) \approx 1.25331414 - 0.07832358 \left(\frac{2}{s}\right).$$

Substitution of this approximation in (25) gives

$$\frac{F}{\sqrt{\alpha_T}} \sqrt{\frac{2}{L}} \left(1.25331414 - 0.07832358 \left(\frac{4\alpha_L}{L}\right) \right) = 0.1,$$

or
$$\frac{0.01\alpha_T}{F^2} L^3 - \pi L^2 + \frac{\pi \alpha_L}{2} L + \frac{\pi \alpha_L^2}{16} \approx 0.$$
$$\mathbf{L} = f(\mathbf{a_T}, \mathbf{a_L})$$

July 28, 2003

Results (1)

July 28, 2003

Keijzer et al. (2000)

Keijzer *et al.* consider a 1-D traveling wave solution for transport and biodegradation of a contaminant (electron donor) and electron acceptor controlled (coupled) by Monod reactions. $\frac{\partial C}{\partial t} = \frac{1}{Pe^L} \frac{\partial^2 C}{\partial x^2} + \frac{1}{Pe^T} \frac{\partial^2 C}{\partial y^2} - \frac{\partial C}{\partial x} - \frac{\partial C}{\partial y} - M_C \frac{\partial M}{\partial t} - M_C L_d(M-1),$ $R\frac{\partial G}{\partial t} = \frac{1}{Pe^L}\frac{\partial^2 G}{\partial x^2} + \frac{1}{Pe^T}\frac{\partial^2 G}{\partial y^2} - \frac{\partial G}{\partial x} - \frac{\partial G}{\partial y} - M_G\frac{\partial M}{\partial t} - M_GL_d(M-1),$ $\frac{\partial M}{\partial t} = L_{\mu} \left[\frac{C}{K_C + C} \right] \left[\frac{G}{K_G + G} \right] M - L_d(M - 1). \qquad \begin{array}{c} C = 1 \\ G = 0 \end{array} \xrightarrow{y} \frac{q}{\searrow} \\ G = 0 \end{array}$ C=0G=1M=1 $M=1 \longrightarrow$ C=0 (0,0) > X $G=1 \longrightarrow$ M=1 ----> Initial and boundary conditions

11

July 28, 2003

Solution

Multiplication of (14) by M_G and (15) by M_C , subtraction of the resulting equations and introduction of the parameter $\beta = M_C/M_G$ yields

$$\frac{\partial}{\partial t} \left[C - R\beta G \right] = \frac{1}{Pe^T} \frac{\partial^2}{\partial y^2} \left[C - \beta G \right] - \frac{\partial}{\partial x} \left[C - \beta G \right].$$
(17)

Disregarding contaminant retardation, i.e. R=1 in (17), allows the introduction of the new variable

$$w(x, y, t) = C(x, y, t) - \beta G(x, y, t).$$
(18)

After introduction of w, (17) reduces to

$$\frac{\partial w}{\partial t} = \frac{1}{Pe^T} \frac{\partial^2 w}{\partial y^2} - \frac{\partial w}{\partial x},\tag{19}$$

subject to (13),

$$\begin{split} & w(x,y,0) = w_0(x,y) = -\beta \ \text{for} \ x > 0 \ \text{and} \ y \in \mathbf{R} \\ & \text{and the BC (Fig.2)} \\ & w(0,y,t) = +1 \ \text{for} \ y > 0 \ \text{and} \ t \ge 0, \end{split} \tag{20}$$

 $w(0, y, t) = -\beta \text{ for } y < 0 \text{ and } t \ge 0.$ (22)

July 28, 2003

Results

Figure 3. Electron acceptor C, contaminant G and microbial mass M distribution for $Pe^T = 5$ and, left, $M_C = 0$, $M_G = 0$, $L_{\mu} = 1$ and $L_d = 1$; right, $M_C = 0.5$, $M_G = 5$, $L_{\mu} = 5$ and $L_d = 0.5$. K_C and K_G equal unity in both cases.

Compare...

Huang *et al.* (2003) use imaging to study a steady-state plume resulting from (instantaneous) aerobic degradation. They compare real data to an MT3D solution (instantaneous and Monod kinetic reactions).

Tank Experiments

Analysis

- Diffusion plays an important role on laboratory scale diffusion has an influence on the result for the velocities that we have in the tankl, e.g. Dzz_0.81 = 0.000175 m^2/d + 0.81 m/d * 0.000048 m = 0.000175 + 0.0000388
- Does transversal dispersivity depend on reactions???

